This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Overview

Classifier-Balancing

This repository contains code for the paper:

Decoupling Representation and Classifier for Long-Tailed Recognition
Bingyi Kang, Saining Xie,Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, Yannis Kalantidis
[OpenReview] [Arxiv] [PDF] [Slides] [@ICLR]
Facebook AI Research, National University of Singapore
International Conference on Learning Representations (ICLR), 2020

Abstract

The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g., by loss re-weighting, data re-sampling, or transfer learning from head- to tail-classes, but all of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability with relative ease by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification.

 

 

If you find this code useful, consider citing our work:

@inproceedings{kang2019decoupling,
  title={Decoupling representation and classifier for long-tailed recognition},
  author={Kang, Bingyi and Xie, Saining and Rohrbach, Marcus and Yan, Zhicheng
          and Gordo, Albert and Feng, Jiashi and Kalantidis, Yannis},
  booktitle={Eighth International Conference on Learning Representations (ICLR)},
  year={2020}
}

Requirements

The code is based on https://github.com/zhmiao/OpenLongTailRecognition-OLTR.

Dataset

  • ImageNet_LT and Places_LT

    Download the ImageNet_2014 and Places_365.

  • iNaturalist 2018

    • Download the dataset following here.
    • cd data/iNaturalist18, Generate image name files with this script or use the existing ones [here].

Change the data_root in main.py accordingly.

Representation Learning

  1. Instance-balanced Sampling
python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml
  1. Class-balanced Sampling
python main.py --cfg ./config/ImageNet_LT/feat_balance.yaml
  1. Square-root Sampling
python main.py --cfg ./config/ImageNet_LT/feat_squareroot.yaml
  1. Progressively-balancing Sampling
python main.py --cfg ./config/ImageNet_LT/feat_shift.yaml

Test the joint learned classifier with representation learning

python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml --test 

Classifier Learning

  1. Nearest Class Mean classifier (NCM).
python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml --test --knn
  1. Classifier Re-training (cRT)
python main.py --cfg ./config/ImageNet_LT/cls_crt.yaml --model_dir ./logs/ImageNet_LT/models/resnext50_uniform_e90
python main.py --cfg ./config/ImageNet_LT/cls_crt.yaml --test
  1. Tau-normalization

Extract fatures

for split in train_split val test
do
  python main.py --cfg ./config/ImageNet_LT/feat_uniform.yaml --test --save_feat $split
done

Evaluation

for split in train val test
do
  python tau_norm.py --root ./logs/ImageNet_LT/models/resnext50_uniform_e90/ --type $split
done
  1. Learnable weight scaling (LWS)
python main.py --cfg ./config/ImageNet_LT/cls_lws.yaml --model_dir ./logs/ImageNet_LT/models/resnext50_uniform_e90
python main.py --cfg ./config/ImageNet_LT/cls_lws.yaml --test

Results and Models

ImageNet_LT

  • Representation learning

    Sampling Many Medium Few All Model
    Instance-Balanced 65.9 37.5 7.7 44.4 ResNeXt50
    Class-Balanced 61.8 40.1 15.5 45.1 ResNeXt50
    Square-Root 64.3 41.2 17.0 46.8 ResNeXt50
    Progressively-Balanced 61.9 43.2 19.4 47.2 ResNeXt50

    For other models trained with instance-balanced (natural) sampling:
    [ResNet50] [ResNet101] [ResNet152] [ResNeXt101] [ResNeXt152]

  • Classifier learning

    Classifier Many Medium Few All Model
    Joint 65.9 37.5 7.7 44.4 ResNeXt50
    NCM 56.6 45.3 28.1 47.3 ResNeXt50
    cRT 61.8 46.2 27.4 49.6 ResNeXt50
    Tau-normalization 59.1 46.9 30.7 49.4 ResNeXt50
    LWS 60.2 47.2 30.3 49.9 ResNeXt50

iNaturalist 2018

Places_LT

  • Representaion learning
    We provide a pretrained ResNet152 with instance-balanced (natural) sampling: [link]
  • Classifier learning
    We provide the cRT and LWS models based on above pretrained ResNet152 model as follows:
    [ResNet152(cRT)] [ResNet152(LWS)]

To test a pretrained model:
python main.py --cfg /path/to/config/file --model_dir /path/to/model/file --test

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree (here). Portions of the source code are from the OLTR project.

Owner
Facebook Research
Facebook Research
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022