GoodNews Everyone! Context driven entity aware captioning for news images

Related tags

Deep LearningGoodNews
Overview

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy!

Model preview:

GoodNews Model!

Huge Thanks goes to New York Times API for providing such a service for FREE!

Another Thanks to @ruotianluo for providing the captioning code.

Dependencies/Requirements:

pytorch==1.0.0
spacy==2.0.11
h5py==2.7.0
bs4==4.5.3
joblib==0.12.2
nltk==3.2.3
tqdm==4.19.5
urllib2==2.7
goose==1.0.25
urlparse
unidecode

Introduction

We took the first steps to move the captioning systems to interpretation (see the paper for more detail). To this end, we have used New York Times API to retrieve the articles, images and captions.

The structure of this repo is as follows:

  1. Getting the data
  2. Cleaning and formating the data
  3. How to train models

Get the data

You have 3 options to get the data.

Images only

If you want to download the images only and directly start working on the same dataset as ours, then download the cleaned version of the dataset without images: article+caption.json and put it to data/ folder and download the img_urls.json and put it in the get_data/get_images_only/ folder.

Then run

python get_images.py --num_thread 16

Then, you will get the images. After that move to Clean and Format Data section.

PS: I have recieved numerous emails regarding some of the images not present/broken in the img_urls.json. Which is why I decided to put the images on the drive to download in the name of open science. Download all images

Images + articles

If you would like the get the raw version of the article and captions to do your own cleaning and processing, no worries! First download the article_urls and go to folder get_data/with_article_urls/ and run

python get_data_with_urls.py --num_thread 16
python combine_dataset.py 

This will get you the raw version of the caption, articles and also the images. After that move to Clean and Format Data section.

I want more!

As you know, New York Times is huge. Their articles starts from 1881 (It is crazy!) until well today. So in case you want to get ALL the data or expand the data to more years, then first step is go to New York Times API and get an API key. All you have to do is just sign up for the API key.

Once you have the key go to folder get_data/with_api/ and run

python retrieve_all_urls.py --api-key XXXX --start_year XXX --end_year XXX 

This is for getting the article urls and then saving in the format of month-year. Once you have the all urls from the API, then you run

python get_data_api.py
python combine_dataset.py

get_data_api.py retrieves the articles, captions and images. combine_dataset.py combines yearly data into one file after removing data points if they have corrupt image, empty articles or empty captions. After that move to Clean and Format Data section.

Small Note

I also provide the links to images and their data splits (train, val, test). Even though I always use random seed to decide the split, just in case If the GODS meddles with the random seed, here is the link to a json where you can find each image and its split: img_splits.json

Clean and Format the Data

Now that we have the data, it is time to clean, preprocess and format the data.

Preprocess

When you reach this part, you must have captioning_dataset.json in your data/ folder.

Captions

This part is for cleaning the captions (tokenizing, removing non-ascii characters, etc.), splitting train, val, and test and creating anonymize captions.

In other words, we change the caption "Alber Einstein taught in Princeton in 1926" to "PERSON_ taught in ORGANIZATION_ in DATE_." Move to preprocess/ folder and run

python clean_captions.py

Resize Images

To resize the images to 256x256:

python resize.py --root XXXX --img_size 256

Articles

Get the article format that is needed for the encoding methods by running: create_article_set.py

python create_article_set.py

Format

Now to create H5 file for captions, images and articles, just need to go to scripts/ folder and run in order

python prepro_labels.py --max_length 31 --word_count_threshold 4
python prepro_images.py

We proposed 3 different article encoding method. You can download each of encoded article methods, articles_full_avg_, articles_full_wavg, articles_full_TBB.

Or you can use the code to obtain them:

python prepro_articles_avg.py
python prepro_articles_wavg.py
python prepro_articles_tbb.py

Train

Finally we are ready to train. Magical words are:

python train.py --cnn_weight [YOUR HOME DIRECTORY]/.torch/resnet152-b121ed2d.pth 

You can check the opt.py for changing a lot of the options such dimension size, different models, hyperparameters, etc.

Evaluate

After you train your models, you can get the score according commonly used metrics: Bleu, Cider, Spice, Rouge, Meteor. Be sure to specify model_path, cnn_model_path, infos_path and sen_embed_path when runing eval.py. eval.py is usually used in training but it is necessary to run it to get the insertion.

Insertion

Last but not least insert.py. After you run eval.py, it will produce you a json file with the ids and their template captions. To fill the correct named entity, you have to run insert.py:

python insert.py --output [XXX] --dump [True/False] --insertion_method ['ctx', 'att', 'rand']

PS: I have been requested to provide model's output, so I thought it would be best to share it with everyone. Model Output In this folder, you have:

test.json: Test set with raw and template version of the caption.

article.json: Article sentences which is needed in the insert.py.

w/o article folder: All the models output on template captions, without articles.

with article folder: Our models output in the paper with sentence attention(sen_att) and image attention(vis_att), provided in the json. Hope this is helpful to more of you.

Conclusion

Thank you and sorry for the bugs!

A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023