Get started with Machine Learning with Python - An introduction with Python programming examples

Overview

Machine Learning With Python

Get started with Machine Learning with Python

An engaging introduction to Machine Learning with Python

TL;DR

  • Download all Jupyter Notebooks from repo (zip-file-download).
  • Unzip download (main.zip) appropriate place.
  • Launch Ananconda and start JuPyter Notebook (Install it from here if needed)
  • Open the first Notebook from download.
  • Start watching the first video lesson (YouTube).

Machine Learning (ML)

Goal of Course

  • Learn the advantages of ML
  • Master a broad variety of ML techniques
  • Solve problems with ML
  • 15 projects with ML covering:
    • k-Nearest-Neighbors Classifier
    • Linear Classifier
    • Support Vector Classification
    • Linear Regression
    • Reinforcement Learning
    • Unsupervised Learning
    • Neural Networks
    • Deep Neural Networks (DNN)
    • Convolutional Neural Networks (CNN)
    • PyTorch classifier
    • Recurrent Neural Networks (RNN)
    • Natural Language Processing
    • Text Categorization
    • Information Retrieval
    • Information Extraction

Course Structure

  • The course puts you on an exciting journey with Machine Learning (ML) using Python.
    • It will start you off with simple ML concepts to understand and build on top of that
    • Taking you from simple classifier problems towards Deep Neural Networks and complex information extractions
  • The course is structured in 15 sessions, where each session is composed of the following elements
    • Lesson introducing new concepts and building on concepts from previous Lessons
    • Project to try out the new concepts
    • YouTube video explaining and demonstrating the concepts
      • A walkthrough of concepts in Lesson with demonstrating coding examples
      • An introduction of the Project
      • A solution of the project

Are You Good Enough?

Worried about whether you have what it takes to complete this course?

  • Do you have the necessary programming skills?
  • Mathematics and statistics?
  • Are you smart enough?

What level of Python is needed?

What about mathematics and statistics?

  • Fortunately, when it comes to the complex math and statistics behind the Machine Learning models, you do not need to understand that part.
  • All you need is to know how they work and can be used.
    • It's like driving a car. You do not have to be a car mechanic to drive it - yes, it helps you understand the basic knowledge of an engine and what the engine does.
    • Using Machine Learning models is like driving a car - you can get from A to B without being a car mechanic.

Still worried?

  • A lot of people consider me a smart guy - well, the truth is, I'm not
    • I just spend the hours learning it - I have no special talent
  • In the end, it all depends on whether you are willing to spend the hours
  • Yes, you can focus your efforts and succeed faster
    • How?
    • Well, structure it with focus and work on it consistently.
    • Structure your learning - many people try to do it all at once and fail - stay focused on one thing and learn well.
    • Yes, structure is the key to your success.

Any questions?

  • I try to answer most questions. Feel free to contact me.
Owner
Learn Python with Rune
Learn Python with Rune
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021