Deep Learning for Time Series Classification

Overview

Deep Learning for Time Series Classification

This is the companion repository for our paper titled "Deep learning for time series classification: a review" published in Data Mining and Knowledge Discovery, also available on ArXiv.

architecture resnet

Data

The data used in this project comes from two sources:

  • The UCR/UEA archive, which contains the 85 univariate time series datasets.
  • The MTS archive, which contains the 13 multivariate time series datasets.

Code

The code is divided as follows:

  • The main.py python file contains the necessary code to run an experiement.
  • The utils folder contains the necessary functions to read the datasets and visualize the plots.
  • The classifiers folder contains nine python files one for each deep neural network tested in our paper.

To run a model on one dataset you should issue the following command:

python3 main.py TSC Coffee fcn _itr_8

which means we are launching the fcn model on the univariate UCR archive for the Coffee dataset (see constants.py for a list of possible options).

Prerequisites

All python packages needed are listed in pip-requirements.txt file and can be installed simply using the pip command. The code now uses Tensorflow 2.0. The results in the paper were generated using the Tensorflow 1.14 implementation which can be found here. Using Tensorflow 2.0 should give the same results.
Now InceptionTime is included in the mix, feel free to send a pull request to add another classifier.

Results

I added the results on the 128 datasets from the UCR archive 2018. Our results in the paper showed that a deep residual network architecture performs best for the time series classification task.

The following table contains the averaged accuracy over 10 runs of each implemented model on the UCR/UEA archive, with the standard deviation between parentheses.

Datasets MLP FCN ResNet Encoder MCNN t-LeNet MCDCNN Time-CNN TWIESN
50words 68.4(7.1) 62.7(6.1) 74.0(1.5) 72.3(1.0) 22.0(24.3) 12.5(0.0) 58.9(5.3) 62.1(1.0) 49.6(2.6)
Adiac 39.7(1.9) 84.4(0.7) 82.9(0.6) 48.4(2.5) 2.2(0.6) 2.0(0.0) 61.0(8.7) 37.9(2.0) 41.6(4.5)
ArrowHead 77.8(1.2) 84.3(1.5) 84.5(1.2) 80.4(2.9) 33.9(4.7) 30.3(0.0) 68.5(6.7) 72.3(2.6) 65.9(9.4)
Beef 72.0(2.8) 69.7(4.0) 75.3(4.2) 64.3(5.0) 20.0(0.0) 20.0(0.0) 56.3(7.8) 76.3(1.1) 53.7(14.9)
BeetleFly 87.0(2.6) 86.0(9.7) 85.0(2.4) 74.5(7.6) 50.0(0.0) 50.0(0.0) 58.0(9.2) 89.0(3.2) 73.0(7.9)
BirdChicken 77.5(3.5) 95.5(3.7) 88.5(5.3) 66.5(5.8) 50.0(0.0) 50.0(0.0) 58.0(10.3) 60.5(9.0) 74.0(15.6)
CBF 87.2(0.7) 99.4(0.1) 99.5(0.3) 94.7(1.2) 33.2(0.1) 33.2(0.1) 82.0(20.5) 95.7(1.0) 89.0(4.9)
Car 76.7(2.6) 90.5(1.4) 92.5(1.4) 75.8(2.0) 24.0(2.7) 31.7(0.0) 73.0(3.0) 78.2(1.2) 78.3(4.0)
ChlorineConcentration 80.2(1.1) 81.4(0.9) 84.4(1.0) 57.3(1.1) 53.3(0.0) 53.3(0.0) 64.3(3.8) 60.0(0.8) 55.3(0.3)
CinC_ECG_torso 84.0(1.0) 82.4(1.2) 82.6(2.4) 91.1(2.7) 38.1(28.0) 25.0(0.1) 73.6(15.2) 74.5(4.9) 30.0(2.9)
Coffee 99.6(1.1) 100.0(0.0) 100.0(0.0) 97.9(1.8) 51.4(3.5) 53.6(0.0) 98.2(2.5) 99.6(1.1) 97.1(2.8)
Computers 56.3(1.6) 82.2(1.0) 81.5(1.2) 57.4(2.2) 52.2(4.8) 50.0(0.0) 55.9(3.3) 54.8(1.5) 62.9(4.1)
Cricket_X 59.1(1.1) 79.2(0.7) 79.1(0.6) 69.4(1.6) 18.9(23.8) 7.4(0.0) 49.5(5.3) 55.2(2.9) 62.2(2.1)
Cricket_Y 60.0(0.8) 78.7(1.2) 80.3(0.8) 67.5(1.0) 18.4(22.0) 8.5(0.0) 49.7(4.3) 57.0(2.4) 65.6(1.3)
Cricket_Z 61.7(0.8) 81.1(1.0) 81.2(1.4) 69.2(1.0) 18.3(24.4) 6.2(0.0) 49.8(3.6) 48.8(2.8) 62.2(2.3)
DiatomSizeReduction 91.0(1.4) 31.3(3.6) 30.1(0.2) 91.3(1.8) 30.1(0.7) 30.1(0.0) 70.3(28.9) 95.4(0.7) 88.0(6.6)
DistalPhalanxOutlineAgeGroup 65.7(1.1) 71.0(1.3) 71.7(1.3) 73.7(1.6) 46.8(0.0) 44.6(2.3) 74.4(2.2) 75.2(1.4) 71.0(2.1)
DistalPhalanxOutlineCorrect 72.6(1.3) 76.0(1.5) 77.1(1.0) 74.1(1.4) 58.3(0.0) 58.3(0.0) 75.3(1.8) 75.9(2.0) 71.3(1.0)
DistalPhalanxTW 61.7(1.3) 69.0(2.1) 66.5(1.6) 68.8(1.6) 30.2(0.0) 28.3(0.7) 67.7(1.8) 67.3(2.8) 60.9(3.0)
ECG200 91.6(0.7) 88.9(1.0) 87.4(1.9) 92.3(1.1) 64.0(0.0) 64.0(0.0) 83.3(3.9) 81.4(1.3) 84.2(5.1)
ECG5000 92.9(0.1) 94.0(0.1) 93.4(0.2) 94.0(0.2) 61.8(10.9) 58.4(0.0) 93.7(0.6) 92.8(0.2) 91.9(0.2)
ECGFiveDays 97.0(0.5) 98.7(0.3) 97.5(1.9) 98.2(0.7) 49.9(0.3) 49.7(0.0) 76.2(13.4) 88.2(1.8) 69.8(14.1)
Earthquakes 71.7(1.3) 72.7(1.7) 71.2(2.0) 74.8(0.7) 74.8(0.0) 74.8(0.0) 74.9(0.2) 70.0(1.9) 74.8(0.0)
ElectricDevices 59.2(1.1) 70.2(1.2) 72.9(0.9) 67.4(1.1) 33.6(19.8) 24.2(0.0) 64.4(1.2) 68.1(1.0) 60.7(0.7)
FISH 84.8(0.8) 95.8(0.6) 97.9(0.8) 86.6(0.9) 13.4(1.3) 12.6(0.0) 75.8(3.9) 84.9(0.5) 87.5(3.4)
FaceAll 79.3(1.1) 94.5(0.9) 83.9(2.0) 79.3(0.8) 17.0(19.5) 8.0(0.0) 71.7(2.3) 76.8(1.1) 65.7(2.5)
FaceFour 84.0(1.4) 92.8(0.9) 95.5(0.0) 81.5(2.6) 26.8(5.7) 29.5(0.0) 71.2(13.5) 90.6(1.1) 85.5(6.2)
FacesUCR 83.3(0.3) 94.6(0.2) 95.5(0.4) 87.4(0.4) 15.3(2.7) 14.3(0.0) 75.6(5.1) 86.9(0.7) 64.4(2.0)
FordA 73.0(0.4) 90.4(0.2) 92.0(0.4) 92.3(0.3) 51.3(0.0) 51.0(0.8) 79.5(2.6) 88.1(0.7) 52.8(2.1)
FordB 60.3(0.3) 87.8(0.6) 91.3(0.3) 89.0(0.5) 49.8(1.2) 51.2(0.0) 53.3(2.9) 80.6(1.5) 50.3(1.2)
Gun_Point 92.7(1.1) 100.0(0.0) 99.1(0.7) 93.6(3.2) 51.3(3.9) 49.3(0.0) 86.7(9.6) 93.2(1.9) 96.1(2.3)
Ham 69.1(1.4) 71.8(1.4) 75.7(2.7) 72.7(1.2) 50.6(1.4) 51.4(0.0) 73.3(4.2) 71.1(2.0) 72.3(6.3)
HandOutlines 91.8(0.5) 80.6(7.9) 91.1(1.4) 89.9(2.3) 64.1(0.0) 64.1(0.0) 90.9(0.6) 88.8(1.2) 66.0(0.7)
Haptics 43.3(1.4) 48.0(2.4) 51.9(1.2) 42.7(1.6) 20.9(3.5) 20.8(0.0) 40.4(3.3) 36.6(2.4) 40.4(4.5)
Herring 52.8(3.9) 60.8(7.7) 61.9(3.8) 58.6(4.8) 59.4(0.0) 59.4(0.0) 60.0(5.2) 53.9(1.7) 59.1(6.5)
InlineSkate 33.7(1.0) 33.9(0.8) 37.3(0.9) 29.2(0.9) 16.7(1.6) 16.5(1.1) 21.5(2.2) 28.7(1.2) 33.0(6.8)
InsectWingbeatSound 60.7(0.4) 39.3(0.6) 50.7(0.9) 63.3(0.6) 15.8(14.2) 9.1(0.0) 58.3(2.6) 58.3(0.6) 43.7(2.0)
ItalyPowerDemand 95.4(0.2) 96.1(0.3) 96.3(0.4) 96.5(0.5) 50.0(0.2) 49.9(0.0) 95.5(1.9) 95.5(0.4) 88.0(2.2)
LargeKitchenAppliances 47.3(0.6) 90.2(0.4) 90.0(0.5) 61.9(2.6) 41.0(16.5) 33.3(0.0) 43.4(2.8) 66.6(5.0) 77.9(1.8)
Lighting2 67.0(2.1) 73.9(1.4) 77.0(1.7) 69.2(4.6) 55.7(5.2) 54.1(0.0) 63.0(5.9) 63.6(2.5) 70.3(4.1)
Lighting7 63.0(1.7) 82.7(2.3) 84.5(2.0) 62.5(2.3) 31.0(11.3) 26.0(0.0) 53.4(5.9) 65.1(3.3) 66.4(6.6)
MALLAT 91.8(0.6) 96.7(0.9) 97.2(0.3) 87.6(2.0) 13.5(3.7) 12.3(0.1) 90.1(5.7) 92.0(0.7) 59.6(9.8)
Meat 89.7(1.7) 85.3(6.9) 96.8(2.5) 74.2(11.0) 33.3(0.0) 33.3(0.0) 70.5(8.8) 90.2(1.8) 96.8(2.0)
MedicalImages 72.1(0.7) 77.9(0.4) 77.0(0.7) 73.4(1.5) 51.4(0.0) 51.4(0.0) 64.0(1.4) 67.6(1.1) 64.9(2.7)
MiddlePhalanxOutlineAgeGroup 53.1(1.8) 55.3(1.8) 56.9(2.1) 57.9(2.9) 18.8(0.0) 57.1(0.0) 58.5(3.8) 56.6(1.5) 58.1(2.6)
MiddlePhalanxOutlineCorrect 77.0(1.1) 80.1(1.0) 80.9(1.2) 76.1(2.3) 57.0(0.0) 57.0(0.0) 81.1(1.6) 76.6(1.3) 74.4(2.3)
MiddlePhalanxTW 53.4(1.6) 51.2(1.8) 48.4(2.0) 59.2(1.0) 27.3(0.0) 28.6(0.0) 58.1(2.4) 54.9(1.7) 53.9(2.9)
MoteStrain 85.8(0.9) 93.7(0.5) 92.8(0.5) 84.0(1.0) 50.8(4.0) 53.9(0.0) 76.5(14.4) 88.2(0.9) 78.5(4.2)
NonInvasiveFatalECG_Thorax1 91.6(0.4) 95.6(0.3) 94.5(0.3) 91.6(0.4) 16.1(29.3) 2.9(0.0) 90.5(1.2) 86.5(0.5) 49.4(4.2)
NonInvasiveFatalECG_Thorax2 91.7(0.3) 95.3(0.3) 94.6(0.3) 93.2(0.9) 16.0(29.2) 2.9(0.0) 91.5(1.5) 89.8(0.3) 52.5(3.2)
OSULeaf 55.7(1.0) 97.7(0.9) 97.9(0.8) 57.6(2.0) 24.3(12.8) 18.2(0.0) 37.8(4.6) 46.2(2.7) 59.5(5.4)
OliveOil 66.7(3.8) 72.3(16.6) 83.0(8.5) 40.0(0.0) 38.0(4.2) 38.0(4.2) 40.0(0.0) 40.0(0.0) 79.0(6.1)
PhalangesOutlinesCorrect 73.5(2.1) 82.0(0.5) 83.9(1.2) 76.7(1.4) 61.3(0.0) 61.3(0.0) 80.3(1.1) 77.1(4.7) 65.4(0.4)
Phoneme 9.6(0.3) 32.5(0.5) 33.4(0.7) 17.2(0.8) 13.2(4.0) 11.3(0.0) 13.0(1.0) 9.5(0.3) 12.8(1.4)
Plane 97.8(0.5) 100.0(0.0) 100.0(0.0) 97.6(0.8) 13.0(4.5) 13.4(1.4) 96.5(3.2) 96.5(1.4) 100.0(0.0)
ProximalPhalanxOutlineAgeGroup 85.6(0.5) 83.1(1.3) 85.3(0.8) 84.4(1.3) 48.8(0.0) 48.8(0.0) 83.8(0.8) 82.8(1.6) 84.4(0.5)
ProximalPhalanxOutlineCorrect 73.3(1.8) 90.3(0.7) 92.1(0.6) 79.1(1.8) 68.4(0.0) 68.4(0.0) 87.3(1.8) 81.2(2.6) 82.1(0.9)
ProximalPhalanxTW 76.7(0.7) 76.7(0.9) 78.0(1.7) 81.2(1.1) 35.1(0.0) 34.6(1.0) 79.7(1.3) 78.3(1.2) 78.1(0.7)
RefrigerationDevices 37.9(2.1) 50.8(1.0) 52.5(2.5) 48.8(1.9) 33.3(0.0) 33.3(0.0) 36.9(3.8) 43.9(1.0) 50.1(1.5)
ScreenType 40.3(1.0) 62.5(1.6) 62.2(1.4) 38.3(2.2) 34.1(2.4) 33.3(0.0) 42.7(1.8) 38.9(0.9) 43.1(4.7)
ShapeletSim 50.3(3.1) 72.4(5.6) 77.9(15.0) 53.0(4.7) 50.0(0.0) 50.0(0.0) 50.7(4.1) 50.0(1.3) 61.7(10.2)
ShapesAll 77.1(0.5) 89.5(0.4) 92.1(0.4) 75.8(0.9) 13.2(24.3) 1.7(0.0) 61.3(5.3) 61.9(0.9) 62.9(2.6)
SmallKitchenAppliances 37.1(1.9) 78.3(1.3) 78.6(0.8) 59.6(1.8) 36.9(11.3) 33.3(0.0) 48.5(3.6) 61.5(2.7) 65.6(1.9)
SonyAIBORobotSurface 67.2(1.3) 96.0(0.7) 95.8(1.3) 74.3(1.9) 44.3(4.5) 42.9(0.0) 65.3(10.9) 68.7(2.3) 63.8(9.9)
SonyAIBORobotSurfaceII 83.4(0.7) 97.9(0.5) 97.8(0.5) 83.9(1.0) 59.4(7.4) 61.7(0.0) 77.4(6.7) 84.1(1.7) 69.7(4.3)
StarLightCurves 94.9(0.2) 96.1(0.9) 97.2(0.3) 95.7(0.5) 65.4(16.1) 57.7(0.0) 93.9(1.2) 92.6(0.2) 85.0(0.2)
Strawberry 96.1(0.5) 97.2(0.3) 98.1(0.4) 94.6(0.9) 64.3(0.0) 64.3(0.0) 95.6(0.6) 95.9(0.3) 89.5(2.0)
SwedishLeaf 85.1(0.5) 96.9(0.5) 95.6(0.4) 93.0(1.1) 11.8(13.2) 6.5(0.4) 84.6(3.6) 88.4(1.1) 82.5(1.4)
Symbols 83.2(1.0) 95.5(1.0) 90.6(2.3) 82.1(1.9) 22.6(16.9) 17.4(0.0) 75.6(11.5) 81.0(0.7) 75.0(8.8)
ToeSegmentation1 58.3(0.9) 96.1(0.5) 96.3(0.6) 65.9(2.6) 50.5(2.7) 52.6(0.0) 49.0(2.5) 59.5(2.2) 86.5(3.2)
ToeSegmentation2 74.5(1.9) 88.0(3.3) 90.6(1.7) 79.5(2.8) 63.2(30.9) 81.5(0.0) 44.3(15.2) 73.8(2.8) 84.2(4.6)
Trace 80.7(0.7) 100.0(0.0) 100.0(0.0) 96.0(1.8) 35.4(27.7) 24.0(0.0) 86.3(5.4) 95.0(2.5) 95.9(1.9)
TwoLeadECG 76.2(1.3) 100.0(0.0) 100.0(0.0) 86.3(2.6) 50.0(0.0) 50.0(0.0) 76.0(16.8) 87.2(2.1) 85.2(11.5)
Two_Patterns 94.6(0.3) 87.1(0.3) 100.0(0.0) 100.0(0.0) 40.3(31.1) 25.9(0.0) 97.8(0.6) 99.2(0.3) 87.1(1.1)
UWaveGestureLibraryAll 95.5(0.2) 81.7(0.3) 86.0(0.4) 95.4(0.1) 28.9(34.7) 12.8(0.2) 92.9(1.1) 91.8(0.4) 55.6(2.5)
Wine 56.5(7.1) 58.7(8.3) 74.4(8.5) 50.0(0.0) 50.0(0.0) 50.0(0.0) 50.0(0.0) 51.7(5.1) 75.9(9.1)
WordsSynonyms 59.8(0.8) 56.4(1.2) 62.2(1.5) 61.3(0.9) 28.4(13.6) 21.9(0.0) 46.3(6.1) 56.6(0.8) 49.0(3.0)
Worms 45.7(2.4) 76.5(2.2) 79.1(2.5) 57.1(3.7) 42.9(0.0) 42.9(0.0) 42.6(5.5) 38.3(2.5) 46.6(4.5)
WormsTwoClass 60.1(1.5) 72.6(2.7) 74.7(3.3) 63.9(4.4) 57.1(0.0) 55.7(4.5) 57.0(1.9) 53.8(2.6) 57.0(2.3)
synthetic_control 97.6(0.4) 98.5(0.3) 99.8(0.2) 99.6(0.3) 29.8(27.8) 16.7(0.0) 98.3(1.2) 99.0(0.4) 87.4(1.6)
uWaveGestureLibrary_X 76.7(0.3) 75.4(0.4) 78.0(0.4) 78.6(0.4) 18.9(21.3) 12.5(0.4) 71.1(1.5) 71.1(1.1) 60.6(1.5)
uWaveGestureLibrary_Y 69.8(0.2) 63.9(0.6) 67.0(0.7) 69.6(0.6) 23.7(24.0) 12.1(0.0) 63.6(1.2) 62.6(0.7) 52.0(2.1)
uWaveGestureLibrary_Z 69.7(0.2) 72.6(0.5) 75.0(0.4) 71.1(0.5) 18.0(18.4) 12.1(0.0) 65.0(1.8) 64.2(0.9) 56.5(2.0)
wafer 99.6(0.0) 99.7(0.0) 99.9(0.1) 99.6(0.0) 91.3(4.4) 89.2(0.0) 99.2(0.3) 96.1(0.1) 91.4(0.5)
yoga 85.5(0.4) 83.9(0.7) 87.0(0.9) 82.0(0.6) 53.6(0.0) 53.6(0.0) 76.2(3.9) 78.1(0.7) 60.7(1.9)
Average_Rank 4.611765 2.682353 1.994118 3.682353 8.017647 8.417647 5.376471 4.970588 5.247059
Wins 4 18 41 10 0 0 3 4 1

The following table contains the averaged accuracy over 10 runs of each implemented model on the MTS archive, with the standard deviation between parentheses.

Datasets MLP FCN ResNet Encoder MCNN t-LeNet MCDCNN Time-CNN TWIESN
AUSLAN 93.3(0.5) 97.5(0.4) 97.4(0.3) 93.8(0.5) 1.1(0.0) 1.1(0.0) 85.4(2.7) 72.6(3.5) 72.4(1.6)
ArabicDigits 96.9(0.2) 99.4(0.1) 99.6(0.1) 98.1(0.1) 10.0(0.0) 10.0(0.0) 95.9(0.2) 95.8(0.3) 85.3(1.4)
CMUsubject16 60.0(16.9) 100.0(0.0) 99.7(1.1) 98.3(2.4) 53.1(4.4) 51.0(5.3) 51.4(5.0) 97.6(1.7) 89.3(6.8)
CharacterTrajectories 96.9(0.2) 99.0(0.1) 99.0(0.2) 97.1(0.2) 5.4(0.8) 6.7(0.0) 93.8(1.7) 96.0(0.8) 92.0(1.3)
ECG 74.8(16.2) 87.2(1.2) 86.7(1.3) 87.2(0.8) 67.0(0.0) 67.0(0.0) 50.0(17.9) 84.1(1.7) 73.7(2.3)
JapaneseVowels 97.6(0.2) 99.3(0.2) 99.2(0.3) 97.6(0.6) 9.2(2.5) 23.8(0.0) 94.4(1.4) 95.6(1.0) 96.5(0.7)
KickvsPunch 61.0(12.9) 54.0(13.5) 51.0(8.8) 61.0(9.9) 54.0(9.7) 50.0(10.5) 56.0(8.4) 62.0(6.3) 67.0(14.2)
Libras 78.0(1.0) 96.4(0.7) 95.4(1.1) 78.3(0.9) 6.7(0.0) 6.7(0.0) 65.1(3.9) 63.7(3.3) 79.4(1.3)
NetFlow 55.0(26.1) 89.1(0.4) 62.7(23.4) 77.7(0.5) 77.9(0.0) 72.3(17.6) 63.0(18.2) 89.0(0.9) 94.5(0.4)
UWave 90.1(0.3) 93.4(0.3) 92.6(0.4) 90.8(0.4) 12.5(0.0) 12.5(0.0) 84.5(1.6) 85.9(0.7) 75.4(6.3)
Wafer 89.4(0.0) 98.2(0.5) 98.9(0.4) 98.6(0.2) 89.4(0.0) 89.4(0.0) 65.8(38.1) 94.8(2.1) 94.9(0.6)
WalkvsRun 70.0(15.8) 100.0(0.0) 100.0(0.0) 100.0(0.0) 75.0(0.0) 60.0(24.2) 45.0(25.8) 100.0(0.0) 94.4(9.1)
Average_Rank 5.208333 2.000000 2.875000 3.041667 7.583333 8.000000 6.833333 4.625000 4.833333
Wins 0 5 3 0 0 0 0 0 2

These results should give an insight of deep learning for TSC therefore encouraging researchers to consider the DNNs as robust classifiers for time series data.

If you would like to generate the critical difference diagrams using Wilcoxon Signed Rank test with Holm's alpha correction, check out the cd-diagram repository.

Reference

If you re-use this work, please cite:

@article{IsmailFawaz2018deep,
  Title                    = {Deep learning for time series classification: a review},
  Author                   = {Ismail Fawaz, Hassan and Forestier, Germain and Weber, Jonathan and Idoumghar, Lhassane and Muller, Pierre-Alain},
  journal                  = {Data Mining and Knowledge Discovery},
  Year                     = {2019},
  volume                   = {33},
  number                   = {4},
  pages                    = {917--963},
}

Acknowledgement

We would like to thank the providers of the UCR/UEA archive. We would also like to thank NVIDIA Corporation for the Quadro P6000 grant and the Mésocentre of Strasbourg for providing access to the cluster. We would also like to thank François Petitjean and Charlotte Pelletier for the fruitful discussions, their feedback and comments while writing this paper.

Owner
Hassan ISMAIL FAWAZ
Machine Learning Researcher - PhD in Computer Science.
Hassan ISMAIL FAWAZ
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023