Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Overview

Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du viel lernen wirst und dabei auch Spaß hast.

In dieser Hausaufgabe wirst du eine Webseite zu deinem Lieblingscharakter aus Filmen oder Büchern erstellen. Hier kannst du zwei Beispiele betrachten: Beispiel 1 und Beispiel 2. Du wirst hier den Github Flow üben, aber das wirst du dann in den Aufgaben erkennen.

Um die Aufgabe zu starten, folge einfach folgenden Schritten:

  • Nutze dieses Repository als Vorlage für ein neues Repository und klicke auf „Use this template“, um das selbe Repository in deinen Repositories zu erstellen. Gib dem Repository beim Erstellen den Namen „<dein github name>.github.io“. Wenn dein Username zum Beispiel sanjsp ist, sollte das Repository sanjsp.github.io heißen
  • Gib dem neu erstellten Repository einen Stern. Falls du keinen Stern geben kannst, solltest du überprüfen, ob deine mit deinem GitHub Account verknüpfte Email Adresse verifiziert ist. Das kannst du bei den Einstellungen nachschauen.
  • Clone das Repository auf deinen Computer. Dafür gehst du oben in der Leiste auf Clone or Download und kopierst den Link des Repositories. Dann führst du in der Git Bash git clone (URL des Repositories) aus. Meine Eingabe sähe wie folgt aus: git clone https://github.com/SanJSp/sanjsp.github.io.git
  • Öffne die Webseite, die aus den Inhalten des Repositories generiert wird. Dafür gehst du im Browser auf \<dein github name\>.github.io. Bei mir wäre das sanjsp.github.io. Dort wirst du momentan einen Error 404 vorfinden. Allerdings kannst du nach dem Lösen jeder Aufgabe hier überprüfen, ob sich etwas geändert hat.
  • Mit der Zeit werden wir, in Form eines Bots, in deinem Repository neue Issues hinzufügen. Insgesamt gibt es fünf Aufgaben in Form von fünf unterschiedlichen Issues. Wenn du ein Issue erfolgreich gelöst hast, wird der Bot in deinem Pull Request ein Passwort für das Quiz auf openHPI kommentieren. Das sollst du dann für die entsprechende Aufgabe eingeben. Bearbeite nun die Issues und folge den Schritten, die in den Issues angegeben sind. Es kann manchmal ein wenig dauern (max. 5 Minuten), bis die Issues erstellt werden.

Die Webseite verändert sich immer, wenn auf dem master ein neuer Commit stattgefunden hat. Wenn du die Veränderungen anschauen möchtest, die du auf deinem feature-Branch erstellt hast, schau dir die index.md Datei in deinem Repository auf GitHub an. Bedenke, dass du auch auf GitHub den Branch wechseln kannst. Um deine Änderungen zu sehen musst du beim Betrachten der Index.md oben links deinen Branch auswählen. Nun kannst du sehen, was beim Formatieren der Inhalte nicht ganz funktioniert hat.

This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023