Create animations for the optimization trajectory of neural nets

Overview

Animating the Optimization Trajectory of Neural Nets

PyPi Latest Release Release License

loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscape of your neural networks. It is based on PyTorch Lightning, please follow its suggested style if you want to add your own model.

Check out my article Visualizing Optimization Trajectory of Neural Nets for more examples and some intuitive explanations.

0. Installation

From PyPI:

pip install loss-landscape-anim

From source, you need Poetry. Once you cloned this repo, run the command below to install the dependencies.

poetry install

1. Basic Examples

With the provided spirals dataset and the default multilayer perceptron MLP model, you can directly call loss_landscape_anim to get a sample animated GIF like this:

# Use default MLP model and sample spirals dataset
loss_landscape_anim(n_epochs=300)

sample gif 1

Note: if you are using it in a notebook, don't forget to include the following at the top:

%matplotlib notebook

Here's another example – the LeNet5 convolutional network on the MNIST dataset. There are many levers you can tune: learning rate, batch size, epochs, frames per second of the GIF output, a seed for reproducible results, whether to load from a trained model, etc. Check out the function signature for more details.

bs = 16
lr = 1e-3
datamodule = MNISTDataModule(batch_size=bs, n_examples=3000)
model = LeNet(learning_rate=lr)

optim_path, loss_steps, accu_steps = loss_landscape_anim(
    n_epochs=10,
    model=model,
    datamodule=datamodule,
    optimizer="adam",
    giffps=15,
    seed=SEED,
    load_model=False,
    output_to_file=True,
    return_data=True,  # Optional return values if you need them
    gpus=1  # Enable GPU training if available
)

GPU training is supported. Just pass gpus into loss_landscape_anim if they are available.

The output of LeNet5 on the MNIST dataset looks like this:

sample gif 2

2. Why PCA?

To create a 2D visualization, the first thing to do is to pick the 2 directions that define the plane. In the paper Visualizing the Loss Landscape of Neural Nets, the authors argued why 2 random directions don't work and why PCA is much better. In summary,

  1. 2 random vectors in high dimensional space have a high probability of being orthogonal, and they can hardly capture any variation for the optimization path. The path’s projection onto the plane spanned by the 2 vectors will just look like random walk.

  2. If we pick one direction to be the vector pointing from the initial parameters to the final trained parameters, and another direction at random, the visualization will look like a straight line because the second direction doesn’t capture much variance compared to the first.

  3. If we use principal component analysis (PCA) on the optimization path and get the top 2 components, we can visualize the loss over the 2 orthogonal directions with the most variance.

For showing the most motion in 2D, PCA is preferred. If you need a quick recap on PCA, here's a minimal example you can go over under 3 minutes.

3. Random and Custom Directions

Although PCA is a good approach for picking the directions, if you need more control, the code also allows you to set any 2 fixed directions, either generated at random or handpicked.

For 2 random directions, set reduction_method to "random", e.g.

loss_landscape_anim(n_epochs=300, load_model=False, reduction_method="random")

For 2 fixed directions of your choosing, set reduction_method to "custom", e.g.

import numpy as np

n_params = ... # number of parameters your model has
u_gen = np.random.normal(size=n_params)
u = u_gen / np.linalg.norm(u_gen)
v_gen = np.random.normal(size=n_params)
v = v_gen / np.linalg.norm(v_gen)

loss_landscape_anim(
    n_epochs=300, load_model=False, reduction_method="custom", custom_directions=(u, v)
)

Here is an sample GIF produced by two random directions:

sample gif 3

By default, reduction_method="pca".

4. Custom Dataset and Model

  1. Prepare your DataModule. Refer to datamodule.py for examples.
  2. Define your custom model that inherits model.GenericModel. Refer to model.py for examples.
  3. Once you correctly setup your custom DataModule and model, call the function as shown below to train the model and plot the loss landscape animation.
bs = ...
lr = ...
datamodule = YourDataModule(batch_size=bs)
model = YourModel(learning_rate=lr)

loss_landscape_anim(
    n_epochs=10,
    model=model,
    datamodule=datamodule,
    optimizer="adam",
    seed=SEED,
    load_model=False,
    output_to_file=True
)

5. Comparing Different Optimizers

As mentioned in section 2, the optimization path usually falls into a very low-dimensional space, and its projection in other directions may look like random walk. On the other hand, different optimizers can take very different paths in the high dimensional space. As a result, it is difficult to pick 2 directions to effectively compare different optimizers.

In this example, I have adam, sgd, adagrad, rmsprop initialized with the same parameters. The two figures below share the same 2 random directions but are centered around different local minima. The first figure centers around the one Adam finds, the second centers around the one RMSprop finds. Essentially, the planes are 2 parallel slices of the loss landscape.

The first figure shows that when centering on the end of Adam's path, it looks like RMSprop is going somewhere with larger loss value. But that is an illusion. If you inspect the loss values of RMSprop, it actually finds a local optimum that has a lower loss than Adam's.

Same 2 directions centering on Adam's path:

adam

Same 2 directions centering on RMSprop's path:

rmsprop

This is a good reminder that the contours are just a 2D slice out of a very high-dimensional loss landscape, and the projections can't reflect the actual path.

However, we can see that the contours are convex no matter where it centers around in these 2 special cases. It more or less reflects that the optimizers shouldn't have a hard time finding a relatively good local minimum. To measure convexity more rigorously, the paper [1] mentioned a better method – using principal curvature, i.e. the eigenvalues of the Hessian. Check out the end of section 6 in the paper for more details.

Reference

[1] Visualizing the Loss Landscape of Neural Nets

You might also like...
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Racing line optimization algorithm in python that uses Particle Swarm Optimization.
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Learning trajectory representations using self-supervision and programmatic supervision.
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Owner
Logan Yang
Software engineer, machine learning practitioner
Logan Yang
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022