Code for "Unsupervised State Representation Learning in Atari"

Overview

Unsupervised State Representation Learning in Atari

Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm

This repo provides code for the benchmark and techniques introduced in the paper Unsupervised State Representation Learning in Atari

Install

AtariARI Wrapper

You can do a minimal install to get just the AtariARI (Atari Annotated RAM Interface) wrapper by doing:

pip install 'gym[atari]'
pip install git+git://github.com/mila-iqia/atari-representation-learning.git

This just requires gym[atari] and it gives you the ability to play around with the AtariARI wrapper. If you want to use the code for training representation learning methods and probing them, you will need a full installation:

Full installation (AtariARI Wrapper + Training & Probing Code)

# PyTorch and scikit learn
conda install pytorch torchvision -c pytorch
conda install scikit-learn

# Baselines for Atari preprocessing
# Tensorflow is a dependency, but you don't need to install the GPU version
conda install tensorflow
pip install git+git://github.com/openai/baselines

# pytorch-a2c-ppo-acktr for RL utils
pip install git+git://github.com/ankeshanand/pytorch-a2c-ppo-acktr-gail

# Clone and install our package
pip install -r requirements.txt
pip install git+git://github.com/mila-iqia/atari-representation-learning.git

Usage

Atari Annotated RAM Interface (AtariARI):

AtariARI exposes the ground truth labels for different state variables for each observation. We have made AtariARI available as a Gym wrapper, to use it simply wrap an Atari gym env with AtariARIWrapper.

import gym
from atariari.benchmark.wrapper import AtariARIWrapper
env = AtariARIWrapper(gym.make('MsPacmanNoFrameskip-v4'))
obs = env.reset()
obs, reward, done, info = env.step(1)

Now, info is a dictionary of the form:

{'ale.lives': 3,
 'labels': {'enemy_sue_x': 88,
  'enemy_inky_x': 88,
  'enemy_pinky_x': 88,
  'enemy_blinky_x': 88,
  'enemy_sue_y': 80,
  'enemy_inky_y': 80,
  'enemy_pinky_y': 80,
  'enemy_blinky_y': 50,
  'player_x': 88,
  'player_y': 98,
  'fruit_x': 0,
  'fruit_y': 0,
  'ghosts_count': 3,
  'player_direction': 3,
  'dots_eaten_count': 0,
  'player_score': 0,
  'num_lives': 2}}

Note: In our experiments, we use additional preprocessing for Atari environments mainly following Minh et. al, 2014. See atariari/benchmark/envs.py for more info!

If you want the raw RAM annotations (which parts of ram correspond to each state variable), check out atariari/benchmark/ram_annotations.py

Probing


⚠️ Important ⚠️ : The RAM labels are meant for full-sized Atari observations (210 * 160). Probing results won't be accurate if you downsample the observations.

We provide an interface for the included probing tasks.

First, get episodes for train, val and, test:

from atariari.benchmark.episodes import get_episodes

tr_episodes, val_episodes,\
tr_labels, val_labels,\
test_episodes, test_labels = get_episodes(env_name="PitfallNoFrameskip-v4", 
                                     steps=50000, 
                                     collect_mode="random_agent")

Then probe them using ProbeTrainer and your encoder (my_encoder):

from atariari.benchmark.probe import ProbeTrainer

probe_trainer = ProbeTrainer(my_encoder, representation_len=my_encoder.feature_size)
probe_trainer.train(tr_episodes, val_episodes,
                     tr_labels, val_labels,)
final_accuracies, final_f1_scores = probe_trainer.test(test_episodes, test_labels)

To see how we use ProbeTrainer, check out scripts/run_probe.py

Here is an example of my_encoder:

# get your encoder
import torch.nn as nn
import torch
class MyEncoder(nn.Module):
    def __init__(self, input_channels, feature_size):
        super().__init__()
        self.feature_size = feature_size
        self.input_channels = input_channels
        self.final_conv_size = 64 * 9 * 6
        self.cnn = nn.Sequential(
            nn.Conv2d(input_channels, 32, 8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, 4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 128, 4, stride=2),
            nn.ReLU(),
            nn.Conv2d(128, 64, 3, stride=1),
            nn.ReLU()
        )
        self.fc = nn.Linear(self.final_conv_size, self.feature_size)

    def forward(self, inputs):
        x = self.cnn(inputs)
        x = x.view(x.size(0), -1)
        return self.fc(x)
        

my_encoder = MyEncoder(input_channels=1,feature_size=256)
# load in weights
my_encoder.load_state_dict(torch.load(open("path/to/my/weights.pt", "rb")))

Spatio-Temporal DeepInfoMax:

src/ contains implementations of several representation learning methods, along with ST-DIM. Here's a sample usage:

python -m scripts.run_probe --method infonce-stdim --env-name {env_name}

where env_name is of the form {game}NoFrameskip-v4, such as PongNoFrameskip-v4

Citation

@article{anand2019unsupervised,
  title={Unsupervised State Representation Learning in Atari},
  author={Anand, Ankesh and Racah, Evan and Ozair, Sherjil and Bengio, Yoshua and C{\^o}t{\'e}, Marc-Alexandre and Hjelm, R Devon},
  journal={arXiv preprint arXiv:1906.08226},
  year={2019}
}
Owner
Mila
Quebec Artificial Intelligence Institute
Mila
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023