Compact Bilinear Pooling for PyTorch

Overview

Compact Bilinear Pooling for PyTorch.

This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

This version relies on the FFT implementation provided with PyTorch 0.4.0 onward. For older versions of PyTorch, use the tag v0.3.0.

Installation

Run the setup.py, for instance:

python setup.py install

Usage

class compact_bilinear_pooling.CompactBilinearPooling(input1_size, input2_size, output_size, h1 = None, s1 = None, h2 = None, s2 = None)

Basic usage:

from compact_bilinear_pooling import CountSketch, CompactBilinearPooling

input_size = 2048
output_size = 16000
mcb = CompactBilinearPooling(input_size, input_size, output_size).cuda()
x = torch.rand(4,input_size).cuda()
y = torch.rand(4,input_size).cuda()

z = mcb(x,y)

Test

A couple of test of the implementation of Compact Bilinear Pooling and its gradient can be run using:

python test.py

References

Comments
  • The value in ComplexMultiply_backward function

    The value in ComplexMultiply_backward function

    Hi @gdlg, thanks for this nice work. I'm confused about the backward procedure of complex multiplication. So I hope you can help me to figure it out.

    In forward,

    Z = XY = (Rx + i * Ix)(Ry + i * Iy) = (RxRy - IxIy) + i * (IxRy + RxIy) = Rz + i * Iz
    

    In backward, according the chain rule, it will has

    grad_(L/X) = grad_(L/Z) * grad(Z/X)
               = grad_Z * Y
               = (R_gz + i * I_gz)(Ry + i * Iy)
               = (R_gzRy - I_gzIy) + i * (I_gzRy + R_gzIy)
    

    So, why is this line implemented by using the value = 1 for real part and value = -1 for image part?

    Is there something wrong in my thoughts? Thanks.

    opened by KaiyuYue 8
  • The miss of Rfft

    The miss of Rfft

    When I run the test module, it indicates that the module of pytorch_fft of fft in autograd does not have attribute of Rfft. What version of pytorch_fft should I install to fit this code?

    opened by PeiqinZhuang 8
  • Save the model - TypeError: can't pickle Rfft objects

    Save the model - TypeError: can't pickle Rfft objects

    How do you save and load the model, I'm using torch.save, which cause the following error:

    File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 135, in save
       return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickl                                                                                                                               e_protocol))
     File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 117, in _with_file_like
       return body(f)
     File "xanaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 135, in <lambda>
       return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickl                                                                                                                               e_protocol))
     File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 198, in _save
       pickler.dump(obj)
    TypeError: can't pickle Rfft objects
    
    
    opened by idansc 3
  • Multi GPU support

    Multi GPU support

    I modify

    class CompactBilinearPooling(nn.Module):   
         def forward(self, x, y):    
                return CompactBilinearPoolingFn.apply(self.sketch1.h, self.sketch1.s, self.sketch2.h, self.sketch2.s, self.output_size, x, y)
    

    to

    def forward(self, x):    
        x = x.permute(0, 2, 3, 1) #NCHW to NHWC   
        y = Variable(x.data.clone())    
        out = (CompactBilinearPoolingFn.apply(self.sketch1.h, self.sketch1.s, self.sketch2.h, self.sketch2.s, self.output_size, x, y)).permute(0,3,1,2) #to NCHW    
        out = nn.functional.adaptive_avg_pool2d(out, 1) # N,C,1,1   
        #add an element-wise signed square root layer and an instance-wise l2 normalization    
        out = (torch.sqrt(nn.functional.relu(out)) - torch.sqrt(nn.functional.relu(-out)))/torch.norm(out,2,1,True)   
        return out 
    

    This makes the compact pooling layer can be plugged to PyTorch CNNs more easily:

    model.avgpool = CompactBilinearPooling(input_C, input_C, bilinear['dim'])
    model.fc = nn.Linear(int(model.fc.in_features/input_C*bilinear['dim']), num_classes)

    However, when I run this using multiple GPUs, I got the following error:

    Traceback (most recent call last): File "train3_bilinear_pooling.py", line 400, in run() File "train3_bilinear_pooling.py", line 219, in run train(train_loader, model, criterion, optimizer, epoch) File "train3_bilinear_pooling.py", line 326, in train return _each_epoch('train', train_loader, model, criterion, optimizer, epoch) File "train3_bilinear_pooling.py", line 270, in _each_epoch output = model(input_var) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/modules/module.py", line 319, in call result = self.forward(*input, **kwargs) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 67, in forward replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 72, in replicate return replicate(module, device_ids) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/replicate.py", line 19, in replicate buffer_copies = comm.broadcast_coalesced(buffers, devices) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/cuda/comm.py", line 55, in broadcast_coalesced for chunk in _take_tensors(tensors, buffer_size): File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/_utils.py", line 232, in _take_tensors if tensor.is_sparse: File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/autograd/variable.py", line 68, in getattr return object.getattribute(self, name) AttributeError: 'Variable' object has no attribute 'is_sparse'

    Do you have any ideas?

    opened by YanWang2014 3
  • AssertionError: False is not true

    AssertionError: False is not true

    Hi, I am back again. When running the test.py, I got the following error File "test.py", line 69, in test_gradients self.assertTrue(torch.autograd.gradcheck(cbp, (x,y), eps=1)) AssertionError: False is not true

    What does this mean?

    opened by YanWang2014 2
  • Support for Pytorch 1.11?

    Support for Pytorch 1.11?

    Hi, torch.fft() and torch.irfft() are no more functions, those are modules. And there appears to be a lof of modification in the parameters. I am currently trying to combine the two types of features with compact bilinear pooling, do you know how to port this code to pytorch 1.11?

    opened by bhosalems 1
  • Training does not converge after joining compact bilinear layer

    Training does not converge after joining compact bilinear layer

    Source code: x = self.features(x) #[4,512,28,28] batch_size = x.size(0) x = (torch.bmm(x, torch.transpose(x, 1, 2)) / 28 ** 2).view(batch_size, -1) x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10)) x = self.classifiers(x) return x my code: x = self.features(x) #[4,512,28,28] x = x.view(x.shape[0], x.shape[1], -1) #[4,512,784] x = x.permute(0, 2, 1) #[4,784,512] x = self.mcb(x,x) #[4,784,512] batch_size = x.size(0) x = x.sum(1) #对于二维来说,dim=0,对列求和;dim=1对行求和;在这里是三维所以是对列求和 x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10)) x = self.classifiers(x) return x

    The training does not converge after modification. Why? Is it a problem with my code?

    opened by roseif 3
Releases(v0.4.0)
Owner
Grégoire Payen de La Garanderie
Grégoire Payen de La Garanderie
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022