Compact Bilinear Pooling for PyTorch

Overview

Compact Bilinear Pooling for PyTorch.

This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

This version relies on the FFT implementation provided with PyTorch 0.4.0 onward. For older versions of PyTorch, use the tag v0.3.0.

Installation

Run the setup.py, for instance:

python setup.py install

Usage

class compact_bilinear_pooling.CompactBilinearPooling(input1_size, input2_size, output_size, h1 = None, s1 = None, h2 = None, s2 = None)

Basic usage:

from compact_bilinear_pooling import CountSketch, CompactBilinearPooling

input_size = 2048
output_size = 16000
mcb = CompactBilinearPooling(input_size, input_size, output_size).cuda()
x = torch.rand(4,input_size).cuda()
y = torch.rand(4,input_size).cuda()

z = mcb(x,y)

Test

A couple of test of the implementation of Compact Bilinear Pooling and its gradient can be run using:

python test.py

References

Comments
  • The value in ComplexMultiply_backward function

    The value in ComplexMultiply_backward function

    Hi @gdlg, thanks for this nice work. I'm confused about the backward procedure of complex multiplication. So I hope you can help me to figure it out.

    In forward,

    Z = XY = (Rx + i * Ix)(Ry + i * Iy) = (RxRy - IxIy) + i * (IxRy + RxIy) = Rz + i * Iz
    

    In backward, according the chain rule, it will has

    grad_(L/X) = grad_(L/Z) * grad(Z/X)
               = grad_Z * Y
               = (R_gz + i * I_gz)(Ry + i * Iy)
               = (R_gzRy - I_gzIy) + i * (I_gzRy + R_gzIy)
    

    So, why is this line implemented by using the value = 1 for real part and value = -1 for image part?

    Is there something wrong in my thoughts? Thanks.

    opened by KaiyuYue 8
  • The miss of Rfft

    The miss of Rfft

    When I run the test module, it indicates that the module of pytorch_fft of fft in autograd does not have attribute of Rfft. What version of pytorch_fft should I install to fit this code?

    opened by PeiqinZhuang 8
  • Save the model - TypeError: can't pickle Rfft objects

    Save the model - TypeError: can't pickle Rfft objects

    How do you save and load the model, I'm using torch.save, which cause the following error:

    File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 135, in save
       return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickl                                                                                                                               e_protocol))
     File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 117, in _with_file_like
       return body(f)
     File "xanaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 135, in <lambda>
       return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickl                                                                                                                               e_protocol))
     File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 198, in _save
       pickler.dump(obj)
    TypeError: can't pickle Rfft objects
    
    
    opened by idansc 3
  • Multi GPU support

    Multi GPU support

    I modify

    class CompactBilinearPooling(nn.Module):   
         def forward(self, x, y):    
                return CompactBilinearPoolingFn.apply(self.sketch1.h, self.sketch1.s, self.sketch2.h, self.sketch2.s, self.output_size, x, y)
    

    to

    def forward(self, x):    
        x = x.permute(0, 2, 3, 1) #NCHW to NHWC   
        y = Variable(x.data.clone())    
        out = (CompactBilinearPoolingFn.apply(self.sketch1.h, self.sketch1.s, self.sketch2.h, self.sketch2.s, self.output_size, x, y)).permute(0,3,1,2) #to NCHW    
        out = nn.functional.adaptive_avg_pool2d(out, 1) # N,C,1,1   
        #add an element-wise signed square root layer and an instance-wise l2 normalization    
        out = (torch.sqrt(nn.functional.relu(out)) - torch.sqrt(nn.functional.relu(-out)))/torch.norm(out,2,1,True)   
        return out 
    

    This makes the compact pooling layer can be plugged to PyTorch CNNs more easily:

    model.avgpool = CompactBilinearPooling(input_C, input_C, bilinear['dim'])
    model.fc = nn.Linear(int(model.fc.in_features/input_C*bilinear['dim']), num_classes)

    However, when I run this using multiple GPUs, I got the following error:

    Traceback (most recent call last): File "train3_bilinear_pooling.py", line 400, in run() File "train3_bilinear_pooling.py", line 219, in run train(train_loader, model, criterion, optimizer, epoch) File "train3_bilinear_pooling.py", line 326, in train return _each_epoch('train', train_loader, model, criterion, optimizer, epoch) File "train3_bilinear_pooling.py", line 270, in _each_epoch output = model(input_var) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/modules/module.py", line 319, in call result = self.forward(*input, **kwargs) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 67, in forward replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 72, in replicate return replicate(module, device_ids) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/replicate.py", line 19, in replicate buffer_copies = comm.broadcast_coalesced(buffers, devices) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/cuda/comm.py", line 55, in broadcast_coalesced for chunk in _take_tensors(tensors, buffer_size): File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/_utils.py", line 232, in _take_tensors if tensor.is_sparse: File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/autograd/variable.py", line 68, in getattr return object.getattribute(self, name) AttributeError: 'Variable' object has no attribute 'is_sparse'

    Do you have any ideas?

    opened by YanWang2014 3
  • AssertionError: False is not true

    AssertionError: False is not true

    Hi, I am back again. When running the test.py, I got the following error File "test.py", line 69, in test_gradients self.assertTrue(torch.autograd.gradcheck(cbp, (x,y), eps=1)) AssertionError: False is not true

    What does this mean?

    opened by YanWang2014 2
  • Support for Pytorch 1.11?

    Support for Pytorch 1.11?

    Hi, torch.fft() and torch.irfft() are no more functions, those are modules. And there appears to be a lof of modification in the parameters. I am currently trying to combine the two types of features with compact bilinear pooling, do you know how to port this code to pytorch 1.11?

    opened by bhosalems 1
  • Training does not converge after joining compact bilinear layer

    Training does not converge after joining compact bilinear layer

    Source code: x = self.features(x) #[4,512,28,28] batch_size = x.size(0) x = (torch.bmm(x, torch.transpose(x, 1, 2)) / 28 ** 2).view(batch_size, -1) x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10)) x = self.classifiers(x) return x my code: x = self.features(x) #[4,512,28,28] x = x.view(x.shape[0], x.shape[1], -1) #[4,512,784] x = x.permute(0, 2, 1) #[4,784,512] x = self.mcb(x,x) #[4,784,512] batch_size = x.size(0) x = x.sum(1) #对于二维来说,dim=0,对列求和;dim=1对行求和;在这里是三维所以是对列求和 x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10)) x = self.classifiers(x) return x

    The training does not converge after modification. Why? Is it a problem with my code?

    opened by roseif 3
Releases(v0.4.0)
Owner
Grégoire Payen de La Garanderie
Grégoire Payen de La Garanderie
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022