Multivariate Time Series Transformer, public version

Overview

Multivariate Time Series Transformer Framework

This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariate Time Series Representation Learning, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '21), August 14-18, 2021. ArXiV version: https://arxiv.org/abs/2010.02803

If you find this code or any of the ideas in the paper useful, please consider citing:

@inproceedings{10.1145/3447548.3467401,
author = {Zerveas, George and Jayaraman, Srideepika and Patel, Dhaval and Bhamidipaty, Anuradha and Eickhoff, Carsten},
title = {A Transformer-Based Framework for Multivariate Time Series Representation Learning},
year = {2021},
isbn = {9781450383325},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3447548.3467401},
doi = {10.1145/3447548.3467401},
booktitle = {Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining},
pages = {2114–2124},
numpages = {11},
keywords = {regression, framework, multivariate time series, classification, transformer, deep learning, self-supervised learning, unsupervised learning, imputation},
location = {Virtual Event, Singapore},
series = {KDD '21}
}

Setup

Instructions refer to Unix-based systems (e.g. Linux, MacOS).

cd mvts_transformer/

Inside an already existing root directory, each experiment will create a time-stamped output directory, which contains model checkpoints, performance metrics per epoch, predictions per sample, the experiment configuration, log files etc. The following commands assume that you have created a new root directory inside the project directory like this: mkdir experiments.

[We recommend creating and activating a conda or other Python virtual environment (e.g. virtualenv) to install packages and avoid conficting package requirements; otherwise, to run pip, the flag --user or sudo privileges will be necessary.]

pip install -r requirements.txt

[Note: Because sometimes newer versions of packages break backward compatibility with previous versions or other packages, instead or requirements.txt you can use failsafe_requirements.txt to use the versions which have been tested to work with this codebase.]

Download dataset files and place them in separate directories, one for regression and one for classification.

Classification: http://www.timeseriesclassification.com/Downloads/Archives/Multivariate2018_ts.zip

Regression: https://zenodo.org/record/3902651#.YB5P0OpOm3s

Example commands

To see all command options with explanations, run: python src/main.py --help

You should replace $1 below with the name of the desired dataset. The commands shown here specify configurations intended for BeijingPM25Quality for regression and SpokenArabicDigits for classification.

[To obtain best performance for other datasets, use the hyperparameters as given in the Supplementary Material of the paper. Appropriate downsampling with the option --subsample_factor can be often used on datasets with longer time series to speedup training, without significant performance degradation.]

The configurations as shown below will evaluate the model on the TEST set periodically during training, and at the end of training.

Besides the console output and the logfile output.log, you can monitor the evolution of performance (after installing tensorboard: pip install tensorboard) with:

tensorboard dev upload --name my_exp --logdir path/to/output_dir

Train models from scratch

Regression

(Note: the loss reported for regression is the Mean Square Error, i.e. without the Root)

python src/main.py --output_dir path/to/experiments --comment "regression from Scratch" --name $1_fromScratch_Regression --records_file Regression_records.xls --data_dir path/to/Datasets/Regression/$1/ --data_class tsra --pattern TRAIN --val_pattern TEST --epochs 100 --lr 0.001 --optimizer RAdam  --pos_encoding learnable --task regression

Classification

python src/main.py --output_dir experiments --comment "classification from Scratch" --name $1_fromScratch --records_file Classification_records.xls --data_dir path/to/Datasets/Classification/$1/ --data_class tsra --pattern TRAIN --val_pattern TEST --epochs 400 --lr 0.001 --optimizer RAdam  --pos_encoding learnable  --task classification  --key_metric accuracy

Pre-train models (unsupervised learning through input masking)

Can be used for any downstream task, e.g. regression, classification, imputation.

Make sure that the network architecture parameters of the pretrained model match the parameters of the desired fine-tuned model (e.g. use --d_model 64 for SpokenArabicDigits).

python src/main.py --output_dir experiments --comment "pretraining through imputation" --name $1_pretrained --records_file Imputation_records.xls --data_dir /path/to/$1/ --data_class tsra --pattern TRAIN --val_ratio 0.2 --epochs 700 --lr 0.001 --optimizer RAdam --batch_size 32 --pos_encoding learnable --d_model 128

Fine-tune pretrained models

Make sure that network architecture parameters (e.g. d_model) used to fine-tune a model match the pretrained model.

Regression

python src/main.py --output_dir experiments --comment "finetune for regression" --name BeijingPM25Quality_finetuned --records_file Regression_records.xls --data_dir /path/to/Datasets/Regression/BeijingPM25Quality/ --data_class tsra --pattern TRAIN --val_pattern TEST  --epochs 200 --lr 0.001 --optimizer RAdam --pos_encoding learnable --d_model 128 --load_model path/to/BeijingPM25Quality_pretrained/checkpoints/model_best.pth --task regression --change_output --batch_size 128

Classification

python src/main.py --output_dir experiments --comment "finetune for classification" --name SpokenArabicDigits_finetuned --records_file Classification_records.xls --data_dir /path/to/Datasets/Classification/SpokenArabicDigits/ --data_class tsra --pattern TRAIN --val_pattern TEST --epochs 100 --lr 0.001 --optimizer RAdam --batch_size 128 --pos_encoding learnable --d_model 64 --load_model path/to/SpokenArabicDigits_pretrained/checkpoints/model_best.pth --task classification --change_output --key_metric accuracy
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023