Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

Overview

AdderNet: Do We Really Need Multiplications in Deep Learning?

This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in Deep Learning?

We present adder networks (AdderNets) to trade massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the L1-norm distance between filters and input feature as the output response. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

UPDATE: The training code is released in 6/28.

Run python main.py to train on CIFAR-10.

UPDATE: Model Zoo about AdderNets are released in 11/27.

Classification results on CIFAR-10 and CIFAR-100 datasets.

Model Method CIFAR-10 CIFAR-100
VGG-small ANN [1] 93.72% 74.58%
PKKD ANN [2] 95.03% 76.94%
ResNet-20 ANN 92.02% 67.60%
PKKD ANN 92.96% 69.93%
ShiftAddNet* [3] 89.32%(160epoch) -
ResNet-32 ANN 93.01% 69.17%
PKKD ANN 93.62% 72.41%

Classification results on ImageNet dataset.

Model Method Top-1 Acc Top-5 Acc
ResNet-18 CNN 69.8% 89.1%
ANN [1] 67.0% 87.6%
PKKD ANN [2] 68.8% 88.6%
ResNet-50 CNN 76.2% 92.9%
ANN 74.9% 91.7%
PKKD ANN 76.8% 93.3%

Super-Resolution results on several SR datasets.

Scale Model Method Set5 (PSNR/SSIM) Set14 (PSNR/SSIM) B100 (PSNR/SSIM) Urban100 (PSNR/SSIM)
×2 VDSR CNN 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
ANN [4] 37.37/0.9575 32.91/0.9112 31.82/0.8947 30.48/0.9099
EDSR CNN 38.11/0.9601 33.92/0.9195 32.32/0.9013 32.93/0.9351
ANN 37.92/0.9589 33.82/0.9183 32.23/0.9000 32.63/0.9309
×3 VDSR CNN 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
ANN 33.47/0.9151 29.62/0.8276 28.72/0.7953 26.95/0.8189
EDSR CNN 34.65/0.9282 30.52/0.8462 29.25/0.8093 28.80/0.8653
ANN 34.35/0.9212 30.33/0.8420 29.13/0.8068 28.54/0.8555
×4 VDSR CNN 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
ANN 31.27/0.8762 27.93/0.7630 27.25/0.7229 25.09/0.7445
EDSR CNN 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033
ANN 32.13/0.8864 28.57/0.7800 27.58/0.7368 26.33/0.7874

*ShiftAddNet [3] used different training setting.

[1] AdderNet: Do We Really Need Multiplications in Deep Learning? Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, Chang Xu. CVPR, 2020. (Oral)

[2] Kernel Based Progressive Distillation for Adder Neural Networks. Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing XU, Yunhe Wang. NeurIPS, 2020. (Spotlight)

[3] ShiftAddNet: A Hardware-Inspired Deep Network. Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang Wang, Yingyan Lin. NeurIPS, 2020.

[4] AdderSR: Towards Energy Efficient Image Super-Resolution. Dehua Song, Yunhe Wang, Hanting Chen, Chang Xu, Chunjing Xu, Dacheng Tao. Arxiv, 2020.

Requirements

  • python 3
  • pytorch >= 1.1.0
  • torchvision

Preparation

You can follow pytorch/examples to prepare the ImageNet data.

The pretrained models are available in google drive or baidu cloud (access code:126b)

Usage

Run python main.py to train on CIFAR-10.

Run python test.py --data_dir 'path/to/imagenet_root/' to evaluate on ImageNet val set. You will achieve 74.9% Top accuracy and 91.7% Top-5 accuracy on the ImageNet dataset using ResNet-50.

Run python test.py --dataset cifar10 --model_dir models/ResNet20-AdderNet.pth --data_dir 'path/to/cifar10_root/' to evaluate on CIFAR-10. You will achieve 91.8% accuracy on the CIFAR-10 dataset using ResNet-20.

The inference and training of AdderNets is slow since the adder filters is implemented without cuda acceleration. You can write cuda to achieve higher inference speed.

Citation

@article{AdderNet,
	title={AdderNet: Do We Really Need Multiplications in Deep Learning?},
	author={Chen, Hanting and Wang, Yunhe and Xu, Chunjing and Shi, Boxin and Xu, Chao and Tian, Qi and Xu, Chang},
	journal={CVPR},
	year={2020}
}

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion.

If you plan to contribute new features, utility functions or extensions to the core, please first open an issue and discuss the feature with us. Sending a PR without discussion might end up resulting in a rejected PR, because we might be taking the core in a different direction than you might be aware of.

Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022