pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

Related tags

Machine LearningpywFM
Overview

pywFM

pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library:

Factorization machines (FM) are a generic approach that allows to mimic most factorization models by feature engineering. This way, factorization machines combine the generality of feature engineering with the superiority of factorization models in estimating interactions between categorical variables of large domain. libFM is a software implementation for factorization machines that features stochastic gradient descent (SGD) and alternating least squares (ALS) optimization as well as Bayesian inference using Markov Chain Monte Carlo (MCMC).

For more information regarding Factorization machines and libFM, read Steffen Rendle's paper: Factorization Machines with libFM, in ACM Trans. Intell. Syst. Technol., 3(3), May. 2012

Don't forget to acknowledge libFM (i.e. cite the paper Factorization Machines with libFM) if you publish results produced with this software.

Motivation

While using Python implementations of Factorization Machines, I felt that the current implementations (pyFM and fastFM) had many flaws. Then I though, why re-invent the wheel? Why not use the original libFM?

Sure, it's not Python native yada yada ... But at least we have a bulletproof, battle-tested implementation that we can guide ourselves with.

Installing

First you have to clone and compile libFM repository and set an environment variable to the libFM bin folder:

git clone https://github.com/srendle/libfm /home/libfm
cd /home/libfm/
# taking advantage of a bug to allow us to save model #ShameShame
git reset --hard 91f8504a15120ef6815d6e10cc7dee42eebaab0f
make all
export LIBFM_PATH=/home/libfm/bin/

Make sure you are compiling source from libfm repository and at this specific commit, since pywFM needs the save_model. Beware that the installers and source code in libfm.org are both dated before this commit. I know this is extremely hacky, but since a fix was deployed it only allows the save_model option for SGD or ALS. I don't know why exactly, because it was working well before.

If you use Jupyter take a look at the following issue for some extra notes on getting libfm to work.

Then, install pywFM using pip:

pip install pywFM

Binary installers for the latest released version are available at the Python package index.

Dependencies

  • numpy
  • scipy
  • sklearn
  • pandas

Example

Very simple example taken from Steffen Rendle's paper: Factorization Machines with libFM.

import pywFM
import numpy as np
import pandas as pd

features = np.matrix([
#     Users  |     Movies     |    Movie Ratings   | Time | Last Movies Rated
#    A  B  C | TI  NH  SW  ST | TI   NH   SW   ST  |      | TI  NH  SW  ST
    [1, 0, 0,  1,  0,  0,  0,   0.3, 0.3, 0.3, 0,     13,   0,  0,  0,  0 ],
    [1, 0, 0,  0,  1,  0,  0,   0.3, 0.3, 0.3, 0,     14,   1,  0,  0,  0 ],
    [1, 0, 0,  0,  0,  1,  0,   0.3, 0.3, 0.3, 0,     16,   0,  1,  0,  0 ],
    [0, 1, 0,  0,  0,  1,  0,   0,   0,   0.5, 0.5,   5,    0,  0,  0,  0 ],
    [0, 1, 0,  0,  0,  0,  1,   0,   0,   0.5, 0.5,   8,    0,  0,  1,  0 ],
    [0, 0, 1,  1,  0,  0,  0,   0.5, 0,   0.5, 0,     9,    0,  0,  0,  0 ],
    [0, 0, 1,  0,  0,  1,  0,   0.5, 0,   0.5, 0,     12,   1,  0,  0,  0 ]
])
target = [5, 3, 1, 4, 5, 1, 5]

fm = pywFM.FM(task='regression', num_iter=5)

# split features and target for train/test
# first 5 are train, last 2 are test
model = fm.run(features[:5], target[:5], features[5:], target[5:])
print(model.predictions)
# you can also get the model weights
print(model.weights)

You can also use numpy's array, sklearn's sparse_matrix, and even pandas' DataFrame as features input.

Prediction on new data

Current approach is to send test data as x_test, y_test in run method call. libfm uses the test values to output some results regarding its predictions. They are not used when training the model. y_test can be set as dummy value and just collect the predictions with model.predictions (also disregard the prediction statistics since those will be wrong). For more info check libfm manual.

Running against a new dataset using something like a predict method is not supported yet. Pending feature request: https://github.com/jfloff/pywFM/issues/7

Feel free to PR that change ;)

Usage

Don't forget to acknowledge libFM (i.e. cite the paper Factorization Machines with libFM) if you publish results produced with this software.

FM: Class that wraps libFM parameters. For more information read libFM manual
Parameters
----------
task : string, MANDATORY
        regression: for regression
        classification: for binary classification
num_iter: int, optional
    Number of iterations
    Defaults to 100
init_stdev : double, optional
    Standard deviation for initialization of 2-way factors
    Defaults to 0.1
k0 : bool, optional
    Use bias.
    Defaults to True
k1 : bool, optional
    Use 1-way interactions.
    Defaults to True
k2 : int, optional
    Dimensionality of 2-way interactions.
    Defaults to 8
learning_method: string, optional
    sgd: parameter learning with SGD
    sgda: parameter learning with adpative SGD
    als: parameter learning with ALS
    mcmc: parameter learning with MCMC
    Defaults to 'mcmc'
learn_rate: double, optional
    Learning rate for SGD
    Defaults to 0.1
r0_regularization: int, optional
    bias regularization for SGD and ALS
    Defaults to 0
r1_regularization: int, optional
    1-way regularization for SGD and ALS
    Defaults to 0
r2_regularization: int, optional
    2-way regularization for SGD and ALS
    Defaults to 0
rlog: bool, optional
    Enable/disable rlog output
    Defaults to True.
verbose: bool, optional
    How much infos to print
    Defaults to False.
seed: int, optional
    seed used to reproduce the results
    Defaults to None.
silent: bool, optional
    Completly silences all libFM output
    Defaults to False.
temp_path: string, optional
    Sets path for libFM temporary files. Usefull when dealing with large data.
    Defaults to None (default mkstemp behaviour)
FM.run: run factorization machine model against train and test data

Parameters
----------
x_train : {array-like, matrix}, shape = [n_train, n_features]
    Training data
y_train : numpy array of shape [n_train]
    Target values
x_test: {array-like, matrix}, shape = [n_test, n_features]
    Testing data
y_test : numpy array of shape [n_test]
    Testing target values
x_validation_set: optional, {array-like, matrix}, shape = [n_train, n_features]
    Validation data (only for SGDA)
y_validation_set: optional, numpy array of shape [n_train]
    Validation target data (only for SGDA)

Return
-------
Returns `namedtuple` with the following properties:

predictions: array [n_samples of x_test]
   Predicted target values per element in x_test.
global_bias: float
    If k0 is True, returns the model's global bias w0
weights: array [n_features]
    If k1 is True, returns the model's weights for each features Wj
pairwise_interactions: numpy matrix [n_features x k2]
    Matrix with pairwise interactions Vj,f
rlog: pandas dataframe [nrow = num_iter]
    `pandas` DataFrame with measurements about each iteration

Docker

This repository includes Dockerfile for development and for running pywFM.

  • Run pywFM examples (Dockerfile): if you are only interested in running the examples, you can use the pre-build image availabe in Docker Hub:
# to run examples/simple.py (the one in this README).
docker run --rm -v "$(pwd)":/home/pywfm -w /home/pywfm -ti jfloff/pywfm python examples/simple.py
  • Development of pywFM (Dockerfile): useful if you want to make changes to the repo. Dockerfile defaults to bash.
# to build image
docker build --rm=true -t jfloff/pywfm-dev .
# to run image
docker run --rm -v "$(pwd)":/home/pywfm-dev -w /home/pywfm-dev -ti jfloff/pywfm-dev

Future work

  • Improve the save_model / load_model so we can have a more defined init-fit-predict cycle (perhaps we could inherit from sklearn.BaseEstimator)
  • Can we contribute to libFM repo so save_model is enabled for all learning methods (namely MCMC)?
  • Look up into shared library solution to improve I/O overhead

I'm no factorization machine expert, so this library was just an effort to have libFM as fast as possible in Python. Feel free to suggest features, enhancements; to point out issues; and of course, to post PRs.

License

MIT (see LICENSE.txt file)

A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
TensorFlow implementation of an arbitrary order Factorization Machine

This is a TensorFlow implementation of an arbitrary order (=2) Factorization Machine based on paper Factorization Machines with libFM. It supports: d

Mikhail Trofimov 785 Dec 21, 2022
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022