Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Related tags

Deep Learninggeppo
Overview

Generalized Proximal Policy Optimization with Sample Reuse

This repository is the official implementation of the reinforcement learning algorithm Generalized Proximal Policy Optimization with Sample Reuse (GePPO), which was introduced in the NeurIPS 2021 paper with the same name.

GePPO improves the sample efficiency of the popular on-policy algorithm PPO through principled sample reuse, while still retaining PPO's approximate policy improvement guarantees. GePPO is theoretically supported by a generalized policy improvement lower bound that can be approximated using data from all recent policies.

Requirements

The source code requires the following packages to be installed (we have included the version used to produce the results found in the paper in parentheses):

  • python (3.7.7)
  • gurobi (9.0.2)
  • gym (0.17.1)
  • matplotlib (3.1.3)
  • mujoco-py (1.50.1.68)
  • numpy (1.18.1)
  • scipy (1.4.1)
  • seaborn (0.10.1)
  • tensorflow (2.1.0)

See the file environment.yml for the conda environment used to run our experiments, which can be built with conda using the command conda env create.

The MuJoCo environments used in our experiments require the MuJoCo physics engine and a MuJoCo license. Please see the MuJoCo website for more information on downloading MuJoCo and obtaining a license.

Our implementation of GePPO uses Gurobi to determine the optimal policy weights used in the algorithm, which requires a Gurobi license. Please see the Gurobi website for more information on downloading Gurobi and obtaining a license. Alternatively, GePPO can be run without Gurobi by using uniform policy weights with the --uniform option.

Training

Simulations can be run by calling run on the command line. For example, we can run simulations on the HalfCheetah-v3 environment with PPO and GePPO as follows:

python -m geppo.run --env_name HalfCheetah-v3 --alg_name ppo
python -m geppo.run --env_name HalfCheetah-v3 --alg_name geppo

By default, all algorithm hyperparameters are set to the default values used in the paper. Hyperparameters can be changed to non-default values by using the relevant option on the command line. For more information on the inputs accepted by run, use the --help option.

The results of simulations are saved in the logs/ folder upon completion.

Evaluation

The results of simulations saved in the logs/ folder can be visualized by calling plot on the command line:

python -m geppo.plot --ppo_file <filename> --geppo_file <filename>

By default, this command saves a plot of average performance throughout training in the figs/ folder. Other metrics can be plotted using the --metric option. For more information on the inputs accepted by plot, use the --help option.

Owner
Jimmy Queeney
Jimmy Queeney
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021