A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Overview

MCILBoost

Project | CVPR Paper | MIA Paper
Contact: Jun-Yan Zhu (junyanz at cs dot cmu dot edu)

Overview

This is the authors' implementation of MCIL-Boost method described in:
[1] Multiple Clustered Instance Learning for Histopathology Cancer Image Segmentation, Clustering, and Classification.
Yan Xu*, Jun-Yan Zhu*, Eric Chang, and Zhuowen Tu (*equal contribution)
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[2] Weakly Supervised Histopathology Cancer Image Segmentation and Classification
Yan Xu, Jun-Yan Zhu, Eric I-Chao Chang, Maode Lai, and Zhuowen Tu
In Medical Image Analysis, 2014.

Please cite our papers if you use our code for your research.

This package consists of the following two multiple-instance learning (MIL) methods:

  • MIL-Boost [Viola et al. 2006]: set c = 1
  • MCIL-Boost [1] [2]: set c > 1

The core of this package is a command-line interface written in C++. Various Matlab helper functions are provided to help users easily train/test MCIL-Boost model, perform cross-validation, and evaluate the performance.

System Requirement

  • Linux and Windows.
  • For Linux, the code is compiled by gcc 4.8.2 under Ubuntu 14.04.

Installation

  • Download and unzip the code.
    • For Linux users, type "chmod +x MCILBoost".
  • Open Matlab and run "demoToy.m".
  • To use the command-line interface, see "Command Usage".
  • To use Matlab functions, see "Matlab helper functions"; You can modify "SetParamsToy.m" and "demoToy.m" to run your own experiments.

Quick Examples

(Windows: MCILBoost.exe; Linux: ./MCILBoost)
An example for training:
MCILBoost.exe -v 2 -t 0 -c 2 -n 150 -s 0 -r 20 toy.data toy.model
An example for testing:
MCILBoost.exe -v 2 -t 1 -c 2 toy.data toy.model toy.result

Command Usage ([ ]: options)

MCILBoost.exe [-v verbose] [-t mode] [-c #clusters] [-n #weakClfs] [-s softmax] data_file model_file [result_file] (No need to specifiy c, n, s, r for test as the program will copy these parameters from the model_file)

-v verbose: shows details about the runtime output (default = 1) 0 -- no output 1 -- some output 2 -- more output

-t mode: set the training mode (default=0) 0 -- train a model 1 -- test a model

-c #clusters: set the number of clusters in positive bags (default = 1) c = 1 -- train a MIL-Boost model c > 1 -- train a MCIL-Boost model with multiple clusters

-n #weakClfs: set the maximum number of weak classifiers (default = 150)

-s softmax: set the softmax type: (default s = 0) 0 -- GM 1 -- LSE

-r exponent: set the exponent used in GM and LSE (default r = 20)

data_file: set the path for input data.

model_file: set the path for the model file.

result_file: set the path for result file. If result_file is not specified, result_file = data_file + '.result'

Matlab helper functions

  • MCILBoost.m: main entry function: model training/testing, and cross-validation.
  • SetParams.m: Set parameters for MCILBoost.m. You need to modify this file to run your own experiment.
  • TrainModel.m: train a model, call MCIL-Boost command line.
  • TestModel.m: test a model, call MCIL-Boost command line.
  • CrossValidate.m: split the data into n-fold, perform n-fold cross-validation, and report performance.
  • ReadData.m: read Matlab data from a text file.
  • WriteData.m: write Matlab data to a text file.
  • ReadResult.m: read Matlab result data from a text file.
  • MeasureResult.m: evaluate performance in terms of accuracy and auc (area under the curve).
  • AUC: compute the area under ROC curve given prediction and ground truth labels.
  • demoToy.m: demo script for toy data.
  • SetParamsToy.m: set parameters for demoToy.
  • demo1.m: demo script for Fox, Tiger, Elephant experiment.
  • SetParamsDemo1.m: set parameters for demo1.
  • demo2.m: demo script for SIVAL experiment.
  • SetParamsDemo2.m: set parameters for demo2.

Summary of Benchmark Results

  • I provide two scripts for running experiments on publicly available MIL benchmarks.
    • "demo1.m": experiments on Fox, Tiger, Elephant dataset.
      The MIL-Boost achieved 0.61 (Fox), 0.81 (Tiger), 0.82 (Elephant) on 10-fold cross-validation over 10 runs.
    • "demo2.m": experiments on SIVAL dataset. There are 180 positive bags (3 clusters), and 180 negative bags. While multiple clusters appear in positive bags, MCIL-Boost works better than MIL-Boost does.
      MIL-Boost (c=1): mean_acc = 0.742, mean_auc = 0.824
      MCIL-Boost (c=3): mean_acc = 0.879, mean_auc = 0.944
  • Note: See "demo1.m" and "demo2.m" for details.

Input Format

  • Note: You can use Matlab function "ReadData.m" and "WriteData.m" to read/write Matlab data from/to the text file.
  • Description: the input format is similar to the format used in LIBSVM and MILL package. The software also supports a sparse format. In the first line, you first need to specify the number of all instances, and the number of feature dimensions. Each line represents one instance, which has an instance id, bag id, and the label id (>= 1 for positive bags, and 0 for negative bags). Each feature value is represented as a : pair where is the index of the feature (starting from 1)
  • Format:
    : : : : ...
    : : : : ...
  • Example: A toy example that contains two negative bags and two positive bags. (see "toy.data") The negative instance is always (0, 0, 0) while there are two clusters of positive instances (0, 1, 0) and (0, 0, 1)
    8 3
    0:0:0 1:0 2:0 3:0
    1:0:0 1:0 2:0 3:0
    2:1:0 1:0 2:0 3:0
    3:1:0 1:0 2:0 3:0
    4:2:1 1:0 2:1 3:0
    5:2:1 1:0 2:0 3:0
    6:3:1 1:0 2:0 3:1
    7:3:1 1:0 2:0 3:0

Output Format

  • Note: You can use Matlab function "ReadResult.m" to load the Matlab data from the result file.

  • Description: The software outputs four kinds of predictions (see more details in the paper):

    • overall bag-level prediction p_i (the probability of the bag x_i being positive bag)
    • cluster-wise bag-level prediction p_i^k (the probability of the bag x_i belonging to k-th cluster)
    • overall instance-level prediction p_{ij} (the probability of the instance x_{ij} being positive instance)
    • cluster-wise instance-level prediction p_{ij}^k (the probability of the instance x_{ij} belonging to the k-th cluster)
    • In the first line, the software outputs the number of bags, and the number of clusters. Then for each bag, the software outputs the bag-level information and prediction (bag id, number of instances, ground truth label, number of clusters, and p_i).The software also outputs the bag-level prediction for each cluster (cluster id and prediction p_i^k for each cluster). Then for each instance, the software outputs the instance-level prediction (instance id and prediction p_{ij}) and instance-level prediction for each cluster (cluster_id and prediction p_{ij}^k)
  • Format:
    #bag= #cluster=
    bag_id= #insts= label= #cluster= pred=
    cluster_id= pred= cluster_id= pred= ...
    inst_id= pred= cluster_id= pred= cluster_id= pred= inst_id= pred= cluster_id= pred= cluster_id= pred= ...
    ...

  • Example: The output of the toy example:
    #bags=4 #clusters=2
    bag_id=0 #insts=2 label=0 #clusters=2 pred=0
    cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=0 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=1 #insts=2 label=0 #clusters=2 pred=0
    cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=0 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=2 #insts=2 label=1 #clusters=2 pred=1
    cluster_id=0 pred=1 cluster_id=1 pred=0
    inst_id=0 pred=1 cluster_id=0 pred=1 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=3 #insts=2 label=1 #clusters=2 pred=1
    cluster_id=0 pred=0 cluster_id=1 pred=1
    inst_id=0 pred=1 cluster_id=0 pred=0 cluster_id=1 pred=1
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0

    Credit

    Part of this code is based on the work by Piotr Dollar and Boris Babenko.

Owner
Jun-Yan Zhu
Understanding and creating pixels.
Jun-Yan Zhu
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022