[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

Overview

ShapeInversion

Paper

Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D Shape Completion through GAN Inversion" CVPR 2021

Results

Setup

Environment

conda create -n shapeinversion python=3.7
conda activate shapeinversion
pip install torch==1.2.0 torchvision==0.4.0
pip install plyfile h5py Ninja matplotlib scipy

Datasets

Our work is extensively evaluated with several existing datasets. For the virtual scan benchmark (derived from ShapeNet), we use CRN's dataset. We would suggest you to get started with this dataset. For ball-holed partial shapes, we refer to PF-Net. For PartNet dataset, we download from MPC. For real scans processed from KITTI, MatterPort3D, and ScanNet, we get from pcl2pcl.

Get started

We provide pretrained tree-GAN models for you to directly start with the inversion stage. You can download them from Google drive or Baidu cloud (password: w1n9), and put them to the pretrained_models folder.

Shape completion

You can specify other class and other datasets, like real scans provided by pcl2pcl.

python trainer.py \
--dataset CRN \
--class_choice chair \
--inversion_mode completion \
--mask_type k_mask \
--save_inversion_path ./saved_results/CRN_chair \
--ckpt_load pretrained_models/chair.pt \
--dataset_path <your_dataset_directory>

Evaluating completion results

For datasets with GT, such as the above CRN_chair:

python eval_completion.py \
--eval_with_GT true \
--saved_results_path saved_results/CRN_chair

For datasets without GT:

python eval_completion.py \
--eval_with_GT false \
--saved_results_path <your_results_on_KITTI>

Giving multiple valid outputs

ShapeInversion is able to provide multiple valid complete shapes, especially when extreme incompleteness that causes ambiguity.

python trainer.py \
--dataset CRN \
--class_choice chair \
--inversion_mode diversity \
--save_inversion_path ./saved_results/CRN_chair_diversity \
--ckpt_load pretrained_models/chair.pt \
--dataset_path <your_dataset_directory>

Shape jittering

ShapeInversion is able to change an object into other plausible shapes of different geometries.

python trainer.py \
--dataset CRN \
--class_choice plane \
--save_inversion_path ./saved_results/CRN_plane_jittering  \
--ckpt_load pretrained_models/plane.pt \
--inversion_mode jittering \
--iterations 30 30 30 30 \
--dataset_path <your_dataset_directory>

Shape morphing

ShapeInversion enables morphing between two shapes.

python trainer.py \
--dataset CRN \
--class_choice chair \
--save_inversion_path ./saved_results/CRN_chair_morphing  \
--ckpt_load pretrained_models/chair.pt \
--inversion_mode morphing \
--dataset_path <your_dataset_directory>

Pretraining

You can also pretrain tree-GAN by yourself.

python pretrain_treegan.py \
--split train \
--class_choice chair \
--FPD_path ./evaluation/pre_statistics_chair.npz \
--ckpt_path ./pretrain_checkpoints/chair \
--knn_loss True \
--dataset_path <your_dataset_directory>

NOTE:

  • The inversion stage supports distributed training by simply adding --dist. It is tested on slurm as well.
  • The hyperparameters provided may not be optimal, feel free to tune them.
  • Smaller batch size for pretraining is totally fine.

Acknowledgement

The code is in part built on tree-GAN and DGP. Besides, CD and EMD are borrowed from ChamferDistancePytorch and MSN respectively, both of which are included in the external folder for convenience.

Citation

@inproceedings{zhang2021unsupervised,
    title = {Unsupervised 3D Shape Completion through GAN Inversion},
    author = {Zhang, Junzhe and Chen, Xinyi and Cai, Zhongang and Pan, Liang and Zhao, Haiyu 
    and Yi, Shuai and Yeo, Chai Kiat and Dai, Bo and Loy, Chen Change},
    booktitle = {CVPR},
    year = {2021}}
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022