we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Related tags

Deep LearningFARNet
Overview

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection

Overview

Localization of anatomical landmarks is essential for clinical diagnosis, treatment planning, and research. In this paper, we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks. To alleviate the problem of limited training data in the medical domain, our network adopts a CNN pre-trained on natural images as the backbone network and several popular networks have been compared. Our FARNet also includes a multi-scale feature aggregation module for multiscale feature fusion and a feature refinement module for high-resolution heatmap regression. Coarse-to-fine supervisions are applied to the two modules to facilitate the endto-end training. We further propose a novel loss function named Exponential Weighted Center loss for more accurate heatmap regression, which focuses on the losses from the pixels near landmarks and suppresses the ones from far away. Our network has been evaluated on three publicly available anatomical landmark detection datasets, including cephalometric radiographs, hand radiographs, and spine radiographs, and achieves state-of-art performances on all three datasets.

The architecture of the feature aggregation and refinement network (FARNet). FARNet includes a backbone network (in the pink dashed box), a multi-scale feature aggregation (MSFA) module (in the blue dashed box) and a feature refinement (FR) module (in the brown dashed box). We also give the feature level labels {L0, L1, L2, L3, L4, L5} at the left side of the figure, and all feature maps at the same horizontal level have the same spatial resolution.

Data

In this paper, we evaluate our landmark detection network on three public benchmark data sets, a cephalometric X-rays dataset [1], a hand X-rays dataset [2] and a Spinal AnteriorPosterior (AP) X-rays dataset [3].

How to use

Dependencies

This tutorial depends on the following libraries:

  • pytorch = 1.0.1
  • numpy = 1.18.5
  • python >= 3.6
  • xlwt

config.py

You should set the image path in config by yourself

Run main.py

Run main.py to train the model and test its performance

Some results

 Illustration of landmark detection results by our proposed method on three public datasets. The first row is the task of cephalometric landmark detetcion(19 landmarks), the second row is the task of hand radiographs landmark detection(37 landmarks) and the last row is the task of spinal anterior-posterior x-ray landmark detection(68 landmarks). The red points denote our detected landmarks via our framework, while blue points represent the ground-truth landmarks.

Reference

[1] C.-W. Wang, C.-T. Huang, J.-H. Lee, C.-H. Li, S.-W. Chang, M.-J.Siao, T.-M. Lai, B. Ibragimov, T. Vrtovec, O. Ronneberger, et al., “A benchmark for comparison of dental radiography analysis algorithms,” Medical image analysis, vol. 31, pp. 63–76, 2016.
[2] C. Payer, D. ˇStern, H. Bischof, and M. Urschler, “Integrating spatial configuration into heatmap regression based cnns for landmark localization,” Medical Image Analysis, vol. 54, pp. 207–219, 2019.
[3] H. Wu, C. Bailey, P. Rasoulinejad, and S. Li, “Automatic landmark estimation for adolescent idiopathic scoliosis assessment using boostnet,” in International Conference on Medical Image Computing and ComputerAssisted Intervention, 2017.

Owner
aoyueyuan
aoyueyuan
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022