Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Overview

Efficient Nearest Neighbor Language Models

This is implementation of the paper:

Efficient Nearest Neighbor Language Models
Junxian He, Graham Neubig, Taylor Berg-Kirkpatrick
EMNLP 2021

This repo implements several techniques to speed up the evaluation of non-parametric, nearest neighbor language models. Specifically, we improve the efficiency along three axes: adaptive retrieval, datastore prunning, and dimension reduction.

Install Dependencies

This repository is largly based on the knnlm repo which is a fork of Fairseq (commit da544b). Please use the exact commit page to determine software requirements for using this code.

git clone [email protected]:jxhe/efficient-knnlm.git

cd efficient-knnlm
pip install --editable .
pip install faiss

Hardware

Experiments for this paper were conducted on machines that contain 32 CPUs, 100GB of RAM, and one NVIDIA 3090 24GB GPU. Saving the Wikitext-103 datastore requires 200GB of disk space. Note that the number of CPUs has a great impact on the speed.

Running Efficient kNNLM

Preparation

Data

We share Fairseq's instructions on how to prepare the data here.

mkdir -p datasets/wikitext-103
cp examples/language_model/wikitext-103/prepare-wikitext-103.sh datasets/wikitext-103

cd datasets/wikitext-103
bash prepare-wikitext-103.sh
cd ../..

TEXT=datasets/wikitext-103
python preprocess.py \
    --only-source \
    --trainpref $TEXT/wiki.train.tokens \
    --validpref $TEXT/wiki.valid.tokens \
    --testpref $TEXT/wiki.test.tokens \
    --destdir data-bin/wikitext-103 \
    --workers 20

Download the language model checkpoint pretrained on WikiText-103

# the model checkpoint link is from the knnlm repo
wget https://nlp.stanford.edu/projects/knnlm/wt103_checkpoint_best.pt -P knnlm_ckpt

Save the datastore

mkdir -p dstore

python eval_lm.py data-bin/wikitext-103 \
    --path knnlm_ckpt/checkpoint_best.pt \
    --sample-break-mode none --max-tokens 3072 \
    --softmax-batch 1024 --gen-subset train \
    --context-window 1536 --tokens-per-sample 1536 \
    --dstore-mmap dstore/dstore --knn-keytype 'last_ffn_input' \
    --dstore-size 103225485 --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --save-knnlm-dstore --fp16 --dstore-fp16

Dimension Reduction

# the script applies PCA of dimension 512 by default 
# the PCA hyperparameter can be tuned in this script
# set pca=0 to revert back to the vanilla version
bash ef_knnlm/build_faiss.sh

The faiss index is saved into dstore. Try it out:

bash ef_knnlm/utils_cmd/eval_knnlm.sh \
    -d wikitext-103 \
    -s valid \
    -p dstore/dstore_size103225485_embed1024_fp16 \
    -i dstore/knn.103225485.pca512.m64.index \
    -n 103225485 \

You should already observe a speedup.

Adaptive Retrieval

prepare heldout data to train the retrieval adaptor

# this randomly selects 90% of validation data as the training data to 
# train the retrieval adaptor
bash ef_knnlm/adaptive_retrieval/prepare_heldout.sh wikitext-103

prepare features

bash ef_knnlm/adaptive_retrieval/prepare_feature_pipeline.sh

train

bash ef_knnlm/adaptive_retrieval/train_ar.sh

It saves the retrieval adaptor checkpoints into checkpoint/wikitext-103-valid

evaluation

# the cutoff ratio in adaptive retrieval
# by default we cut off half of the retrieval
cutoff=50

# please change this to the .pt file path observed from the last step
ar_ckpt=xxx

# this hyperparameter needs to be changed if 
# the datastore sizes change (e.g. datastore pruning)
size=103225485

dstore_prefix=dstore/dstore_size${size}_embed1024_fp16
index_file=dstore/knn.${size}.pca512.m64.index

bash ef_knnlm/utils_cmd/eval_knnlm.sh \
    -d wikitext-103 \
    -s test \
    -p ${dstore_prefix} \
    -i ${index_file} \
    -c knnlm_ckpt/wt103_checkpoint_best.pt \
    -n ${size} \
    -f datasets/wikitext-103 \
    -a ctxt,freq,lm_ent,lm_max,fert \
    -u ${cutoff} \
    -h ${ar_ckpt} \
    # -w "True"

Datastore Pruning

precompute all the retrieval results for every record in the datastore:

# It is possible to parallel this operation by change 
# "--start-point" and "--num" arguments so that the training
# data would be splitted into multiple smaller ones. In this case
# the retrieval results would be saved into multiple files
bash ef_knnlm/dstore_compression/save_retrieval_results.sh

The retrieval results are saved into dstore/greedy_merge, other datastore pruning algorithms may be played around using these pre-computed results.

greedy merging

# perform greedy merging to yield a new smaller datastore, 
# and build faiss index from the new datastore
bash ef_knnlm/dstore_compression/merge_compression.sh

The pruned datastore and index are saved into dstore/greedy_merging, replace the previousdstore_prefix/index_file with the new ones to use the pruned the datastore. The option -w "True"needs to be passed to eval_knnlm.sh to read the generated datastore weights file from greedy merging.

Reference

@inproceedings{he2021eff,
title={Efficient Nearest Neighbor Language Models},
author={Junxian He and Graham Neubig and Taylor Berg-Kirkpatrick},
booktitle={Proceedings of EMNLP},
year={2021}
}
Owner
Junxian He
NLP/ML PhD student at CMU
Junxian He
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022