Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Overview

Efficient Nearest Neighbor Language Models

This is implementation of the paper:

Efficient Nearest Neighbor Language Models
Junxian He, Graham Neubig, Taylor Berg-Kirkpatrick
EMNLP 2021

This repo implements several techniques to speed up the evaluation of non-parametric, nearest neighbor language models. Specifically, we improve the efficiency along three axes: adaptive retrieval, datastore prunning, and dimension reduction.

Install Dependencies

This repository is largly based on the knnlm repo which is a fork of Fairseq (commit da544b). Please use the exact commit page to determine software requirements for using this code.

git clone [email protected]:jxhe/efficient-knnlm.git

cd efficient-knnlm
pip install --editable .
pip install faiss

Hardware

Experiments for this paper were conducted on machines that contain 32 CPUs, 100GB of RAM, and one NVIDIA 3090 24GB GPU. Saving the Wikitext-103 datastore requires 200GB of disk space. Note that the number of CPUs has a great impact on the speed.

Running Efficient kNNLM

Preparation

Data

We share Fairseq's instructions on how to prepare the data here.

mkdir -p datasets/wikitext-103
cp examples/language_model/wikitext-103/prepare-wikitext-103.sh datasets/wikitext-103

cd datasets/wikitext-103
bash prepare-wikitext-103.sh
cd ../..

TEXT=datasets/wikitext-103
python preprocess.py \
    --only-source \
    --trainpref $TEXT/wiki.train.tokens \
    --validpref $TEXT/wiki.valid.tokens \
    --testpref $TEXT/wiki.test.tokens \
    --destdir data-bin/wikitext-103 \
    --workers 20

Download the language model checkpoint pretrained on WikiText-103

# the model checkpoint link is from the knnlm repo
wget https://nlp.stanford.edu/projects/knnlm/wt103_checkpoint_best.pt -P knnlm_ckpt

Save the datastore

mkdir -p dstore

python eval_lm.py data-bin/wikitext-103 \
    --path knnlm_ckpt/checkpoint_best.pt \
    --sample-break-mode none --max-tokens 3072 \
    --softmax-batch 1024 --gen-subset train \
    --context-window 1536 --tokens-per-sample 1536 \
    --dstore-mmap dstore/dstore --knn-keytype 'last_ffn_input' \
    --dstore-size 103225485 --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --save-knnlm-dstore --fp16 --dstore-fp16

Dimension Reduction

# the script applies PCA of dimension 512 by default 
# the PCA hyperparameter can be tuned in this script
# set pca=0 to revert back to the vanilla version
bash ef_knnlm/build_faiss.sh

The faiss index is saved into dstore. Try it out:

bash ef_knnlm/utils_cmd/eval_knnlm.sh \
    -d wikitext-103 \
    -s valid \
    -p dstore/dstore_size103225485_embed1024_fp16 \
    -i dstore/knn.103225485.pca512.m64.index \
    -n 103225485 \

You should already observe a speedup.

Adaptive Retrieval

prepare heldout data to train the retrieval adaptor

# this randomly selects 90% of validation data as the training data to 
# train the retrieval adaptor
bash ef_knnlm/adaptive_retrieval/prepare_heldout.sh wikitext-103

prepare features

bash ef_knnlm/adaptive_retrieval/prepare_feature_pipeline.sh

train

bash ef_knnlm/adaptive_retrieval/train_ar.sh

It saves the retrieval adaptor checkpoints into checkpoint/wikitext-103-valid

evaluation

# the cutoff ratio in adaptive retrieval
# by default we cut off half of the retrieval
cutoff=50

# please change this to the .pt file path observed from the last step
ar_ckpt=xxx

# this hyperparameter needs to be changed if 
# the datastore sizes change (e.g. datastore pruning)
size=103225485

dstore_prefix=dstore/dstore_size${size}_embed1024_fp16
index_file=dstore/knn.${size}.pca512.m64.index

bash ef_knnlm/utils_cmd/eval_knnlm.sh \
    -d wikitext-103 \
    -s test \
    -p ${dstore_prefix} \
    -i ${index_file} \
    -c knnlm_ckpt/wt103_checkpoint_best.pt \
    -n ${size} \
    -f datasets/wikitext-103 \
    -a ctxt,freq,lm_ent,lm_max,fert \
    -u ${cutoff} \
    -h ${ar_ckpt} \
    # -w "True"

Datastore Pruning

precompute all the retrieval results for every record in the datastore:

# It is possible to parallel this operation by change 
# "--start-point" and "--num" arguments so that the training
# data would be splitted into multiple smaller ones. In this case
# the retrieval results would be saved into multiple files
bash ef_knnlm/dstore_compression/save_retrieval_results.sh

The retrieval results are saved into dstore/greedy_merge, other datastore pruning algorithms may be played around using these pre-computed results.

greedy merging

# perform greedy merging to yield a new smaller datastore, 
# and build faiss index from the new datastore
bash ef_knnlm/dstore_compression/merge_compression.sh

The pruned datastore and index are saved into dstore/greedy_merging, replace the previousdstore_prefix/index_file with the new ones to use the pruned the datastore. The option -w "True"needs to be passed to eval_knnlm.sh to read the generated datastore weights file from greedy merging.

Reference

@inproceedings{he2021eff,
title={Efficient Nearest Neighbor Language Models},
author={Junxian He and Graham Neubig and Taylor Berg-Kirkpatrick},
booktitle={Proceedings of EMNLP},
year={2021}
}
Owner
Junxian He
NLP/ML PhD student at CMU
Junxian He
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022