This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Related tags

Deep LearningCvT
Overview

Introduction

This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolutional vision Transformers (CvT), that improves Vision Transformers (ViT) in performance and efficienty by introducing convolutions into ViT to yield the best of both disignes. This is accomplished through two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs) to the ViT architecture (e.g. shift, scale, and distortion invariance) while maintaining the merits of Transformers (e.g. dynamic attention, global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition, performance gains are maintained when pretrained on larger dataset (e.g. ImageNet-22k) and fine-tuned to downstream tasks. Pre-trained on ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7% on the ImageNet-1k val set. Finally, our results show that the positional encoding, a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks.

Main results

Models pre-trained on ImageNet-1k

Model Resolution Param GFLOPs Top-1
CvT-13 224x224 20M 4.5 81.6
CvT-21 224x224 32M 7.1 82.5
CvT-13 384x384 20M 16.3 83.0
CvT-32 384x384 32M 24.9 83.3

Models pre-trained on ImageNet-22k

Model Resolution Param GFLOPs Top-1
CvT-13 384x384 20M 16.3 83.3
CvT-32 384x384 32M 24.9 84.9
CvT-W24 384x384 277M 193.2 87.6

You can download all the models from our model zoo.

Quick start

Installation

Assuming that you have installed PyTroch and TorchVision, if not, please follow the officiall instruction to install them firstly. Intall the dependencies using cmd:

python -m pip install -r requirements.txt --user -q

The code is developed and tested using pytorch 1.7.1. Other versions of pytorch are not fully tested.

Data preparation

Please prepare the data as following:

|-DATASET
  |-imagenet
    |-train
    | |-class1
    | | |-img1.jpg
    | | |-img2.jpg
    | | |-...
    | |-class2
    | | |-img3.jpg
    | | |-...
    | |-class3
    | | |-img4.jpg
    | | |-...
    | |-...
    |-val
      |-class1
      | |-img5.jpg
      | |-...
      |-class2
      | |-img6.jpg
      | |-...
      |-class3
      | |-img7.jpg
      | |-...
      |-...

Run

Each experiment is defined by a yaml config file, which is saved under the directory of experiments. The directory of experiments has a tree structure like this:

experiments
|-{DATASET_A}
| |-{ARCH_A}
| |-{ARCH_B}
|-{DATASET_B}
| |-{ARCH_A}
| |-{ARCH_B}
|-{DATASET_C}
| |-{ARCH_A}
| |-{ARCH_B}
|-...

We provide a run.sh script for running jobs in local machine.

Usage: run.sh [run_options]
Options:
  -g|--gpus <1> - number of gpus to be used
  -t|--job-type <aml> - job type (train|test)
  -p|--port <9000> - master port
  -i|--install-deps - If install dependencies (default: False)

Training on local machine

bash run.sh -g 8 -t train --cfg experiments/imagenet/cvt/cvt-13-224x224.yaml

You can also modify the config paramters by the command line. For example, if you want to change the lr rate to 0.1, you can run the command:

bash run.sh -g 8 -t train --cfg experiments/imagenet/cvt/cvt-13-224x224.yaml TRAIN.LR 0.1

Notes:

  • The checkpoint, model, and log files will be saved in OUTPUT/{dataset}/{training config} by default.

Testing pre-trained models

bash run.sh -t test --cfg experiments/imagenet/cvt/cvt-13-224x224.yaml TEST.MODEL_FILE ${PRETRAINED_MODLE_FILE}

Citation

If you find this work or code is helpful in your research, please cite:

@article{wu2021cvt,
  title={Cvt: Introducing convolutions to vision transformers},
  author={Wu, Haiping and Xiao, Bin and Codella, Noel and Liu, Mengchen and Dai, Xiyang and Yuan, Lu and Zhang, Lei},
  journal={arXiv preprint arXiv:2103.15808},
  year={2021}
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Bin Xiao
Bin Xiao
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023