A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

Overview
PyPI Version Conda-forge Version Conda-forge downloads License Travis Build Status Test Coverage Docs JOSS article

HDBSCAN

Now a part of scikit-learn-contrib

HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection.

In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster size, is intuitive and easy to select.

HDBSCAN is ideal for exploratory data analysis; it's a fast and robust algorithm that you can trust to return meaningful clusters (if there are any).

Based on the paper:
R. Campello, D. Moulavi, and J. Sander, Density-Based Clustering Based on Hierarchical Density Estimates In: Advances in Knowledge Discovery and Data Mining, Springer, pp 160-172. 2013

Documentation, including tutorials, are available on ReadTheDocs at http://hdbscan.readthedocs.io/en/latest/ .

Notebooks comparing HDBSCAN to other clustering algorithms, explaining how HDBSCAN works and comparing performance with other python clustering implementations are available.

How to use HDBSCAN

The hdbscan package inherits from sklearn classes, and thus drops in neatly next to other sklearn clusterers with an identical calling API. Similarly it supports input in a variety of formats: an array (or pandas dataframe, or sparse matrix) of shape (num_samples x num_features); an array (or sparse matrix) giving a distance matrix between samples.

import hdbscan
from sklearn.datasets import make_blobs

data, _ = make_blobs(1000)

clusterer = hdbscan.HDBSCAN(min_cluster_size=10)
cluster_labels = clusterer.fit_predict(data)

Performance

Significant effort has been put into making the hdbscan implementation as fast as possible. It is orders of magnitude faster than the reference implementation in Java, and is currently faster than highly optimized single linkage implementations in C and C++. version 0.7 performance can be seen in this notebook . In particular performance on low dimensional data is better than sklearn's DBSCAN , and via support for caching with joblib, re-clustering with different parameters can be almost free.

Additional functionality

The hdbscan package comes equipped with visualization tools to help you understand your clustering results. After fitting data the clusterer object has attributes for:

  • The condensed cluster hierarchy
  • The robust single linkage cluster hierarchy
  • The reachability distance minimal spanning tree

All of which come equipped with methods for plotting and converting to Pandas or NetworkX for further analysis. See the notebook on how HDBSCAN works for examples and further details.

The clusterer objects also have an attribute providing cluster membership strengths, resulting in optional soft clustering (and no further compute expense). Finally each cluster also receives a persistence score giving the stability of the cluster over the range of distance scales present in the data. This provides a measure of the relative strength of clusters.

Outlier Detection

The HDBSCAN clusterer objects also support the GLOSH outlier detection algorithm. After fitting the clusterer to data the outlier scores can be accessed via the outlier_scores_ attribute. The result is a vector of score values, one for each data point that was fit. Higher scores represent more outlier like objects. Selecting outliers via upper quantiles is often a good approach.

Based on the paper:
R.J.G.B. Campello, D. Moulavi, A. Zimek and J. Sander Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection, ACM Trans. on Knowledge Discovery from Data, Vol 10, 1 (July 2015), 1-51.

Robust single linkage

The hdbscan package also provides support for the robust single linkage clustering algorithm of Chaudhuri and Dasgupta. As with the HDBSCAN implementation this is a high performance version of the algorithm outperforming scipy's standard single linkage implementation. The robust single linkage hierarchy is available as an attribute of the robust single linkage clusterer, again with the ability to plot or export the hierarchy, and to extract flat clusterings at a given cut level and gamma value.

Example usage:

import hdbscan
from sklearn.datasets import make_blobs

data = make_blobs(1000)

clusterer = hdbscan.RobustSingleLinkage(cut=0.125, k=7)
cluster_labels = clusterer.fit_predict(data)
hierarchy = clusterer.cluster_hierarchy_
alt_labels = hierarchy.get_clusters(0.100, 5)
hierarchy.plot()
Based on the paper:
K. Chaudhuri and S. Dasgupta. "Rates of convergence for the cluster tree." In Advances in Neural Information Processing Systems, 2010.

Installing

Easiest install, if you have Anaconda (thanks to conda-forge which is awesome!):

conda install -c conda-forge hdbscan

PyPI install, presuming you have sklearn and all its requirements (numpy and scipy) installed:

pip install hdbscan

If pip is having difficulties pulling the dependencies then we'd suggest installing the dependencies manually using anaconda followed by pulling hdbscan from pip:

conda install cython
conda install numpy scipy
conda install scikit-learn
pip install hdbscan

For a manual install get this package:

wget https://github.com/scikit-learn-contrib/hdbscan/archive/master.zip
unzip master.zip
rm master.zip
cd hdbscan-master

Install the requirements

sudo pip install -r requirements.txt

or

conda install scikit-learn cython

Install the package

python setup.py install

Python Version

The hdbscan library supports both Python 2 and Python 3. However we recommend Python 3 as the better option if it is available to you.

Help and Support

For simple issues you can consult the FAQ in the documentation. If your issue is not suitably resolved there, please check the issues on github. Finally, if no solution is available there feel free to open an issue ; the authors will attempt to respond in a reasonably timely fashion.

Contributing

We welcome contributions in any form! Assistance with documentation, particularly expanding tutorials, is always welcome. To contribute please fork the project make your changes and submit a pull request. We will do our best to work through any issues with you and get your code merged into the main branch.

Citing

If you have used this codebase in a scientific publication and wish to cite it, please use the Journal of Open Source Software article.

L. McInnes, J. Healy, S. Astels, hdbscan: Hierarchical density based clustering In: Journal of Open Source Software, The Open Journal, volume 2, number 11. 2017

Licensing

The hdbscan package is 3-clause BSD licensed. Enjoy.

Owner
Leland McInnes
Leland McInnes
3D rendered visualization of the austrian monuments registry

Visualization of the Austrian Monuments Visualization of the monument landscape of the austrian monuments registry (Bundesdenkmalamt Denkmalverzeichni

Nikolai Janakiev 3 Oct 24, 2019
Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset.

Visualization-of-Human3.6M-Dataset Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset. human-motion-prediction

Gaurav Kumar Yadav 5 Nov 18, 2022
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

MLH Fellowship 7 Oct 05, 2022
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022
HW 02 for CS40 - matplotlib practice

HW 02 for CS40 - matplotlib practice project instructions https://github.com/mikeizbicki/cmc-csci040/tree/2021fall/hw_02 Drake Lyric Analysis Bar Char

13 Oct 27, 2021
Backend app for visualizing CANedge log files in Grafana (directly from local disk or S3)

CANedge Grafana Backend - Visualize CAN/LIN Data in Dashboards This project enables easy dashboard visualization of log files from the CANedge CAN/LIN

13 Dec 15, 2022
Insert SVGs into matplotlib

Insert SVGs into matplotlib

Andrew White 35 Dec 29, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Dec 26, 2022
basemap - Plot on map projections (with coastlines and political boundaries) using matplotlib.

Basemap Plot on map projections (with coastlines and political boundaries) using matplotlib. ⚠️ Warning: this package is being deprecated in favour of

Matplotlib Developers 706 Dec 28, 2022
Create SVG drawings from vector geodata files (SHP, geojson, etc).

SVGIS Create SVG drawings from vector geodata files (SHP, geojson, etc). SVGIS is great for: creating small multiples, combining lots of datasets in a

Neil Freeman 78 Dec 09, 2022
Getting started with Python, Dash and Plot.ly for the Data Dashboards team

data_dashboards Getting started with Python, Dash and Plot.ly for the Data Dashboards team Getting started MacOS users: # Install the pyenv version ma

Department for Levelling Up, Housing and Communities 1 Nov 08, 2021
在原神中使用围栏绘图

yuanshen_draw 在原神中使用围栏绘图 文件说明 toLines.py 将一张图片转换为对应的线条集合,视频可以按帧转换。 draw.py 在原神家园里绘制一张线条图。 draw_video.py 在原神家园里绘制视频(自动按帧摆放,截图(win)并回收) cat_to_video.py

14 Oct 08, 2022
Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Glumpy 1.1k Jan 05, 2023
A napari plugin for visualising and interacting with electron cryotomograms.

napari-tomoslice A napari plugin for visualising and interacting with electron cryotomograms. Installation You can install napari-tomoslice via pip: p

3 Jan 03, 2023
Bokeh Plotting Backend for Pandas and GeoPandas

Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of

Patrik Hlobil 822 Jan 07, 2023
A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

HDBSCAN Now a part of scikit-learn-contrib HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over va

Leland McInnes 91 Dec 29, 2022
Some problems of SSLC ( High School ) before outputs and after outputs

Some problems of SSLC ( High School ) before outputs and after outputs 1] A Python program and its output (output1) while running the program is given

Fayas Noushad 3 Dec 01, 2021
OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs

Open Stats Discover and share the KPIs of your OpenSource project. OpenStats is a library built on top of streamlit that extracts data from the Github

Pere Miquel Brull 4 Apr 03, 2022
An interactive UMAP visualization of the MNIST data set.

Code for an interactive UMAP visualization of the MNIST data set. Demo at https://grantcuster.github.io/umap-explorer/. You can read more about the de

grant 70 Dec 27, 2022
D-Analyst : High Performance Visualization Tool

D-Analyst : High Performance Visualization Tool D-Analyst is a high performance data visualization built with python and based on OpenGL. It allows to

4 Apr 14, 2022