Neural Turing Machines (NTM) - PyTorch Implementation

Overview

PyTorch Neural Turing Machine (NTM)

PyTorch implementation of Neural Turing Machines (NTM).

An NTM is a memory augumented neural network (attached to external memory) where the interactions with the external memory (address, read, write) are done using differentiable transformations. Overall, the network is end-to-end differentiable and thus trainable by a gradient based optimizer.

The NTM is processing input in sequences, much like an LSTM, but with additional benfits: (1) The external memory allows the network to learn algorithmic tasks easier (2) Having larger capacity, without increasing the network's trainable parameters.

The external memory allows the NTM to learn algorithmic tasks, that are much harder for LSTM to learn, and to maintain an internal state much longer than traditional LSTMs.

A PyTorch Implementation

This repository implements a vanilla NTM in a straight forward way. The following architecture is used:

NTM Architecture

Features

  • Batch learning support
  • Numerically stable
  • Flexible head configuration - use X read heads and Y write heads and specify the order of operation
  • copy and repeat-copy experiments agree with the paper

Copy Task

The Copy task tests the NTM's ability to store and recall a long sequence of arbitrary information. The input to the network is a random sequence of bits, ending with a delimiter. The sequence lengths are randomised between 1 to 20.

Training

Training convergence for the copy task using 4 different seeds (see the notebook for details)

NTM Convergence

The following plot shows the cost per sequence length during training. The network was trained with seed=10 and shows fast convergence. Other seeds may not perform as well but should converge in less than 30K iterations.

NTM Convergence

Evaluation

Here is an animated GIF that shows how the model generalize. The model was evaluated after every 500 training samples, using the target sequence shown in the upper part of the image. The bottom part shows the network output at any given training stage.

Copy Task

The following is the same, but with sequence length = 80. Note that the network was trained with sequences of lengths 1 to 20.

Copy Task


Repeat Copy Task

The Repeat Copy task tests whether the NTM can learn a simple nested function, and invoke it by learning to execute a for loop. The input to the network is a random sequence of bits, followed by a delimiter and a scalar value that represents the number of repetitions to output. The number of repetitions, was normalized to have zero mean and variance of one (as in the paper). Both the length of the sequence and the number of repetitions are randomised between 1 to 10.

Training

Training convergence for the repeat-copy task using 4 different seeds (see the notebook for details)

NTM Convergence

Evaluation

The following image shows the input presented to the network, a sequence of bits + delimiter + num-reps scalar. Specifically the sequence length here is eight and the number of repetitions is five.

Repeat Copy Task

And here's the output the network had predicted:

Repeat Copy Task

Here's an animated GIF that shows how the network learns to predict the targets. Specifically, the network was evaluated in each checkpoint saved during training with the same input sequence.

Repeat Copy Task

Installation

The NTM can be used as a reusable module, currently not packaged though.

  1. Clone repository
  2. Install PyTorch
  3. pip install -r requirements.txt

Usage

Execute ./train.py

usage: train.py [-h] [--seed SEED] [--task {copy,repeat-copy}] [-p PARAM]
                [--checkpoint-interval CHECKPOINT_INTERVAL]
                [--checkpoint-path CHECKPOINT_PATH]
                [--report-interval REPORT_INTERVAL]

optional arguments:
  -h, --help            show this help message and exit
  --seed SEED           Seed value for RNGs
  --task {copy,repeat-copy}
                        Choose the task to train (default: copy)
  -p PARAM, --param PARAM
                        Override model params. Example: "-pbatch_size=4
                        -pnum_heads=2"
  --checkpoint-interval CHECKPOINT_INTERVAL
                        Checkpoint interval (default: 1000). Use 0 to disable
                        checkpointing
  --checkpoint-path CHECKPOINT_PATH
                        Path for saving checkpoint data (default: './')
  --report-interval REPORT_INTERVAL
                        Reporting interval
Owner
Guy Zana
I make things, author of Curated Papers
Guy Zana
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022