Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Overview

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Install

Clone the repository and run:

$ pip install .

Usage

This code implements the adaECOLog algorithms (OFU and TS variants) - both from the aforedmentioned paper, along with several baselines (oldest to newest):

Experiments can be ran for several Logistic Bandit (i.e structured Bernoulli feedback) environments, such as static and time-varying finite arm-sets, or inifinite arm-sets (e.g. unit ball).

regret_fig

Single Experiment

Single experiments (one algorithm for one environment) can be ran thanks to scripts/run_example.py. The script instantiate the algorithm and environment indicated in the file scripts/configs/example_config.py and plots the regret.

Benchmark

Benchmarks can be obtained thanks to scripts/run_all.py. This script runs experiments for any config file in scripts/configs/generated_configs/ and stores the result in scripts/logs/.

Plot results

You can use scripts/plot_regret.py to plot regret curves. This scripts plot regret curves for all logs in scripts/logs/ that match the indicated dimension and parameter norm.

usage: plot_regret.py [-h] [-d [D]] [-pn [PN]]

Plot regret curves (by default for dimension=2 and parameter norm=3)

optional arguments:
  -h, --help  show this help message and exit
  -d [D]      Dimension (default: 2)
  -pn [PN]    Parameter norm (default: 4.0)

Generating configs

You can automatically generate config files thanks to scripts/generate_configs.py.

usage: generate_configs.py [-h] [-dims DIMS [DIMS ...]] [-pn PN [PN ...]] [-algos ALGOS [ALGOS ...]] [-r [R]] [-hz [HZ]] [-ast [AST]] [-ass [ASS]] [-fl [FL]]

Automatically creates configs, stored in configs/generated_configs/

optional arguments:
  -h, --help            show this help message and exit
  -dims DIMS [DIMS ...]
                        Dimension (default: None)
  -pn PN [PN ...]       Parameter norm (||theta_star||) (default: None)
  -algos ALGOS [ALGOS ...]
                        Algorithms. Possibilities include GLM-UCB, LogUCB1, OFULog-r, OL2M, GLOC or adaECOLog (default: None)
  -r [R]                # of independent runs (default: 20)
  -hz [HZ]              Horizon, normalized (later multiplied by sqrt(dim)) (default: 1000)
  -ast [AST]            Arm set type. Must be either fixed_discrete, tv_discrete or ball (default: fixed_discrete)
  -ass [ASS]            Arm set size, normalized (later multiplied by dim) (default: 10)
  -fl [FL]              Failure level, must be in (0,1) (default: 0.05)

For instance running python generate_configs.py -dims 2 -pn 3 4 5 -algos GLM-UCB GLOC OL2M adaECOLog generates configs in dimension 2 for GLM-UCB, GLOC, OL2M and adaECOLog, for environments (set as defaults) of ground-truth norm 3, 4 and 5.

Owner
Faury Louis
Machine Learning researcher. Interest in bandit algorithms and reinforcement learning. PhD in Machine Learning, obtained in 2021.
Faury Louis
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022