Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Overview

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Install

Clone the repository and run:

$ pip install .

Usage

This code implements the adaECOLog algorithms (OFU and TS variants) - both from the aforedmentioned paper, along with several baselines (oldest to newest):

Experiments can be ran for several Logistic Bandit (i.e structured Bernoulli feedback) environments, such as static and time-varying finite arm-sets, or inifinite arm-sets (e.g. unit ball).

regret_fig

Single Experiment

Single experiments (one algorithm for one environment) can be ran thanks to scripts/run_example.py. The script instantiate the algorithm and environment indicated in the file scripts/configs/example_config.py and plots the regret.

Benchmark

Benchmarks can be obtained thanks to scripts/run_all.py. This script runs experiments for any config file in scripts/configs/generated_configs/ and stores the result in scripts/logs/.

Plot results

You can use scripts/plot_regret.py to plot regret curves. This scripts plot regret curves for all logs in scripts/logs/ that match the indicated dimension and parameter norm.

usage: plot_regret.py [-h] [-d [D]] [-pn [PN]]

Plot regret curves (by default for dimension=2 and parameter norm=3)

optional arguments:
  -h, --help  show this help message and exit
  -d [D]      Dimension (default: 2)
  -pn [PN]    Parameter norm (default: 4.0)

Generating configs

You can automatically generate config files thanks to scripts/generate_configs.py.

usage: generate_configs.py [-h] [-dims DIMS [DIMS ...]] [-pn PN [PN ...]] [-algos ALGOS [ALGOS ...]] [-r [R]] [-hz [HZ]] [-ast [AST]] [-ass [ASS]] [-fl [FL]]

Automatically creates configs, stored in configs/generated_configs/

optional arguments:
  -h, --help            show this help message and exit
  -dims DIMS [DIMS ...]
                        Dimension (default: None)
  -pn PN [PN ...]       Parameter norm (||theta_star||) (default: None)
  -algos ALGOS [ALGOS ...]
                        Algorithms. Possibilities include GLM-UCB, LogUCB1, OFULog-r, OL2M, GLOC or adaECOLog (default: None)
  -r [R]                # of independent runs (default: 20)
  -hz [HZ]              Horizon, normalized (later multiplied by sqrt(dim)) (default: 1000)
  -ast [AST]            Arm set type. Must be either fixed_discrete, tv_discrete or ball (default: fixed_discrete)
  -ass [ASS]            Arm set size, normalized (later multiplied by dim) (default: 10)
  -fl [FL]              Failure level, must be in (0,1) (default: 0.05)

For instance running python generate_configs.py -dims 2 -pn 3 4 5 -algos GLM-UCB GLOC OL2M adaECOLog generates configs in dimension 2 for GLM-UCB, GLOC, OL2M and adaECOLog, for environments (set as defaults) of ground-truth norm 3, 4 and 5.

Owner
Faury Louis
Machine Learning researcher. Interest in bandit algorithms and reinforcement learning. PhD in Machine Learning, obtained in 2021.
Faury Louis
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022