Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Overview

Ponder(ing) Transformer

Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of the input sequence, using the scheme from the PonderNet paper. Will also try to abstract out a pondering module that can be used with any block that returns an output with the halting probability.

This repository would not have been possible without repeated viewings of Yannic's educational video

Install

$ pip install ponder-transformer

Usage

import torch
from ponder_transformer import PonderTransformer

model = PonderTransformer(
    num_tokens = 20000,
    dim = 512,
    max_seq_len = 512
)

mask = torch.ones(1, 512).bool()

x = torch.randint(0, 20000, (1, 512))
y = torch.randint(0, 20000, (1, 512))

loss = model(x, labels = y, mask = mask)
loss.backward()

Now you can set the model to .eval() mode and it will terminate early when all samples of the batch have emitted a halting signal

import torch
from ponder_transformer import PonderTransformer

model = PonderTransformer(
    num_tokens = 20000,
    dim = 512,
    max_seq_len = 512,
    causal = True
)

x = torch.randint(0, 20000, (2, 512))
mask = torch.ones(2, 512).bool()

model.eval() # setting to eval makes it return the logits as well as the halting indices

logits, layer_indices = model(x,  mask = mask) # (2, 512, 20000), (2)

# layer indices will contain, for each batch element, which layer they exited

Citations

@misc{banino2021pondernet,
    title   = {PonderNet: Learning to Ponder}, 
    author  = {Andrea Banino and Jan Balaguer and Charles Blundell},
    year    = {2021},
    eprint  = {2107.05407},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
You might also like...
Implementation of the Transformer variant proposed in
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

Comments
  • Evaluating ponder-net on more pondering-steps than trained on.

    Evaluating ponder-net on more pondering-steps than trained on.

    As the paper says,

    In evaluation, and under known temporal or computational limitations, N can be set naively as a constant (or not set any limit, i.e. N → ∞). For training, we found that a more effective (and interpretable) way of parameterizing N is by defining a minimum cumulative probability of halting. N is then the smallest value of n such that sum( p_sub_ j > 1 − ε)over(j=1, n) , with the hyper-parameter ε positive near 0 (in our experiments 0.05).

    from that I infer that pondering can be done to more steps than trained on. How can be done so with this implementation?

    edit: I was going through the paper again,and I think what the paper means is that the max_num_pondering_steps:N should be re evaluated at every training-step, the model should be run till the condition is met or a pre-defined num of max steps is reached, and where the cumsum_probs condition will be met will be set as 'N', with the cumsum_probs normalised with one of the methods. Then that value of 'N' will be used to calc prior geom for the kl_div (and not normalising the prior geom term).

    i.e. if the num of pondering steps are initially set to 'M', then the model will recur for 'k' steps - i.e. till the condition is met or for 'M' num of max steps; then 'N' will be calculated by first calculating the probabilities - p_0 to p_k - then normalizing through one of the methods, then calculate cumulative-sum of those probabilities, and checking where the sum is greater than threshold, and assigning it the value 'N'. After that, calculating prior geometric values with the defined hyper-parameter, for 'N' seq-len, and using this in the kl-div term against the halting probs truncated to 'N' steps.

    λp is a hyper-parameter that defines a geometric prior distribution pG(λp) on the halting policy (truncated at N)

    opened by Vbansal21 0
  • Can pondernet used for imagenet?

    Can pondernet used for imagenet?

    I plan to do a project on the complexity of tasks on image dataset like imagenet, cifar 100. If I use a vision transformer, then can I implement my project?

    opened by fryegg 2
Releases(0.0.8)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022