FMA: A Dataset For Music Analysis

Overview

FMA: A Dataset For Music Analysis

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson.
International Society for Music Information Retrieval Conference (ISMIR), 2017.

We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fma.

Data

All metadata and features for all tracks are distributed in fma_metadata.zip (342 MiB). The below tables can be used with pandas or any other data analysis tool. See the paper or the usage.ipynb notebook for a description.

  • tracks.csv: per track metadata such as ID, title, artist, genres, tags and play counts, for all 106,574 tracks.
  • genres.csv: all 163 genres with name and parent (used to infer the genre hierarchy and top-level genres).
  • features.csv: common features extracted with librosa.
  • echonest.csv: audio features provided by Echonest (now Spotify) for a subset of 13,129 tracks.

Then, you got various sizes of MP3-encoded audio data:

  1. fma_small.zip: 8,000 tracks of 30s, 8 balanced genres (GTZAN-like) (7.2 GiB)
  2. fma_medium.zip: 25,000 tracks of 30s, 16 unbalanced genres (22 GiB)
  3. fma_large.zip: 106,574 tracks of 30s, 161 unbalanced genres (93 GiB)
  4. fma_full.zip: 106,574 untrimmed tracks, 161 unbalanced genres (879 GiB)

See the wiki (or #41) for known issues (errata).

Code

The following notebooks, scripts, and modules have been developed for the dataset.

  1. usage.ipynb: shows how to load the datasets and develop, train, and test your own models with it.
  2. analysis.ipynb: exploration of the metadata, data, and features. Creates the figures used in the paper.
  3. baselines.ipynb: baseline models for genre recognition, both from audio and features.
  4. features.py: features extraction from the audio (used to create features.csv).
  5. webapi.ipynb: query the web API of the FMA. Can be used to update the dataset.
  6. creation.ipynb: creation of the dataset (used to create tracks.csv and genres.csv).
  7. creation.py: creation of the dataset (long-running data collection and processing).
  8. utils.py: helper functions and classes.

Usage

Binder   Click the binder badge to play with the code and data from your browser without installing anything.

  1. Clone the repository.

    git clone https://github.com/mdeff/fma.git
    cd fma
  2. Create a Python 3.6 environment.
    # with https://conda.io
    conda create -n fma python=3.6
    conda activate fma
    
    # with https://github.com/pyenv/pyenv
    pyenv install 3.6.0
    pyenv virtualenv 3.6.0 fma
    pyenv activate fma
    
    # with https://pipenv.pypa.io
    pipenv --python 3.6
    pipenv shell
    
    # with https://docs.python.org/3/tutorial/venv.html
    python3.6 -m venv ./env
    source ./env/bin/activate
  3. Install dependencies.

    pip install --upgrade pip setuptools wheel
    pip install numpy==1.12.1  # workaround resampy's bogus setup.py
    pip install -r requirements.txt

    Note: you may need to install ffmpeg or graphviz depending on your usage.
    Note: install CUDA to train neural networks on GPUs (see Tensorflow's instructions).

  4. Download some data, verify its integrity, and uncompress the archives.

    cd data
    
    curl -O https://os.unil.cloud.switch.ch/fma/fma_metadata.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_small.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_medium.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_large.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_full.zip
    
    echo "f0df49ffe5f2a6008d7dc83c6915b31835dfe733  fma_metadata.zip" | sha1sum -c -
    echo "ade154f733639d52e35e32f5593efe5be76c6d70  fma_small.zip"    | sha1sum -c -
    echo "c67b69ea232021025fca9231fc1c7c1a063ab50b  fma_medium.zip"   | sha1sum -c -
    echo "497109f4dd721066b5ce5e5f250ec604dc78939e  fma_large.zip"    | sha1sum -c -
    echo "0f0ace23fbe9ba30ecb7e95f763e435ea802b8ab  fma_full.zip"     | sha1sum -c -
    
    unzip fma_metadata.zip
    unzip fma_small.zip
    unzip fma_medium.zip
    unzip fma_large.zip
    unzip fma_full.zip
    
    cd ..

    Note: try 7zip if decompression errors. It might be an unsupported compression issue.

  5. Fill a .env configuration file (at repository's root) with the following content.

    AUDIO_DIR=./data/fma_small/  # the path to a decompressed fma_*.zip
    FMA_KEY=MYKEY  # only if you want to query the freemusicarchive.org API
    
  6. Open Jupyter or run a notebook.

    jupyter notebook
    make usage.ipynb

Impact, coverage, and resources

100+ research papers

Full list on Google Scholar. Some picks below.

2 derived works
~10 posts
5 events
~10 dataset lists

Contributing

Contribute by opening an issue or a pull request. Let this repository be a hub around the dataset!

History

2017-05-09 pre-publication release

  • paper: arXiv:1612.01840v2
  • code: git tag rc1
  • fma_metadata.zip sha1: f0df49ffe5f2a6008d7dc83c6915b31835dfe733
  • fma_small.zip sha1: ade154f733639d52e35e32f5593efe5be76c6d70
  • fma_medium.zip sha1: c67b69ea232021025fca9231fc1c7c1a063ab50b
  • fma_large.zip sha1: 497109f4dd721066b5ce5e5f250ec604dc78939e
  • fma_full.zip sha1: 0f0ace23fbe9ba30ecb7e95f763e435ea802b8ab
  • known issues: see #41

2016-12-06 beta release

  • paper: arXiv:1612.01840v1
  • code: git tag beta
  • fma_small.zip sha1: e731a5d56a5625f7b7f770923ee32922374e2cbf
  • fma_medium.zip sha1: fe23d6f2a400821ed1271ded6bcd530b7a8ea551

Acknowledgments and Licenses

We are grateful to the Swiss Data Science Center (EPFL and ETHZ) for hosting the dataset.

Please cite our work if you use our code or data.

@inproceedings{fma_dataset,
  title = {{FMA}: A Dataset for Music Analysis},
  author = {Defferrard, Micha\"el and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier},
  booktitle = {18th International Society for Music Information Retrieval Conference (ISMIR)},
  year = {2017},
  archiveprefix = {arXiv},
  eprint = {1612.01840},
  url = {https://arxiv.org/abs/1612.01840},
}
@inproceedings{fma_challenge,
  title = {Learning to Recognize Musical Genre from Audio},
  subtitle = {Challenge Overview},
  author = {Defferrard, Micha\"el and Mohanty, Sharada P. and Carroll, Sean F. and Salath\'e, Marcel},
  booktitle = {The 2018 Web Conference Companion},
  year = {2018},
  publisher = {ACM Press},
  isbn = {9781450356404},
  doi = {10.1145/3184558.3192310},
  archiveprefix = {arXiv},
  eprint = {1803.05337},
  url = {https://arxiv.org/abs/1803.05337},
}
Owner
Michaël Defferrard
Research on machine learning and graphs. Open science, source, data.
Michaël Defferrard
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022