A Python package for generating concise, high-quality summaries of a probability distribution

Overview

GoodPoints

A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints is a collection of tools for compressing a distribution more effectively than independent sampling:

  • Given an initial summary of n input points, kernel thinning returns s << n output points with comparable integration error across a reproducing kernel Hilbert space
  • Compress++ reduces the runtime of generic thinning algorithms with minimal loss in accuracy

Installation

To install the goodpoints package, use the following pip command:

pip install goodpoints

Getting started

The primary kernel thinning function is thin in the kt module:

from goodpoints import kt
coreset = kt.thin(X, m, split_kernel, swap_kernel, delta=0.5, seed=123, store_K=False)
    """Returns kernel thinning coreset of size floor(n/2^m) as row indices into X
    
    Args:
      X: Input sequence of sample points with shape (n, d)
      m: Number of halving rounds
      split_kernel: Kernel function used by KT-SPLIT (typically a square-root kernel, krt);
        split_kernel(y,X) returns array of kernel evaluations between y and each row of X
      swap_kernel: Kernel function used by KT-SWAP (typically the target kernel, k);
        swap_kernel(y,X) returns array of kernel evaluations between y and each row of X
      delta: Run KT-SPLIT with constant failure probabilities delta_i = delta/n
      seed: Random seed to set prior to generation; if None, no seed will be set
      store_K: If False, runs O(nd) space version which does not store kernel
        matrix; if True, stores n x n kernel matrix
    """

For example uses, please refer to the notebook examples/kt/run_kt_experiment.ipynb.

The primary Compress++ function is compresspp in the compress module:

from goodpoints import compress
coreset = compress.compresspp(X, halve, thin, g)
    """Returns Compress++(g) coreset of size sqrt(n) as row indices into X

    Args: 
        X: Input sequence of sample points with shape (n, d)
        halve: Function that takes in an (n', d) numpy array Y and returns 
          floor(n'/2) distinct row indices into Y, identifying a halved coreset
        thin: Function that takes in an (n', d) numpy array Y and returns
          2^g sqrt(n') row indices into Y, identifying a thinned coreset
        g: Oversampling factor
    """

For example uses, please refer to the code examples/compress/construct_compresspp_coresets.py.

Examples

Code in the examples directory uses the goodpoints package to recreate the experiments of the following research papers.


Kernel Thinning

@article{dwivedi2021kernel,
  title={Kernel Thinning},
  author={Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2105.05842},
  year={2021}
}
  1. The script examples/kt/submit_jobs_run_kt.py reproduces the vignette experiments of Kernel Thinning on a Slurm cluster by executing examples/kt/run_kt_experiment.ipynb with appropriate parameters. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb, where in the last code block we report the median heuristic based bandwidth parameteters (along with the code to compute it).
  2. After all results have been generated, the notebook plot_results.ipynb can be used to reproduce the figures of Kernel Thinning.

Generalized Kernel Thinning

@article{dwivedi2021generalized,
  title={Generalized Kernel Thinning},
  author={Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2110.01593},
  year={2021}
}
  1. The script examples/gkt/submit_gkt_jobs.py reproduces the vignette experiments of Generalized Kernel Thinning on a Slurm cluster by executing examples/gkt/run_generalized_kt_experiment.ipynb with appropriate parameters. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb.
  2. Once the coresets are generated, examples/gkt/compute_test_function_errors.ipynb can be used to generate integration errors for different test functions.
  3. After all results have been generated, the notebook examples/gkt/plot_gkt_results.ipynb can be used to reproduce the figures of Generalized Kernel Thinning.

Distribution Compression in Near-linear Time

@article{shetti2021distribution,
  title={Distribution Compression in Near-linear Time},
  author={Abhishek Shetty and Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2111.07941},
  year={2021}
}
  1. The notebook examples/compress/script_to_deploy_jobs.ipynb reproduces the experiments of Distribution Compression in Near-linear Time in the following manner: 1a. It generates various coresets and computes their mmds by executing examples/compress/construct_{THIN}_coresets.py for THIN in {compresspp, kt, st, herding} with appropriate parameters, where the flag kt stands for kernel thinning, st stands for standard thinning (choosing every t-th point), and herding refers to kernel herding. 1b. It compute the runtimes of different algorithms by executing examples/compress/run_time.py. 1c. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb. 1d. The notebook currently deploys these jobs on a slurm cluster, but setting deploy_slurm = False in examples/compress/script_to_deploy_jobs.ipynb will submit the jobs as independent python calls on terminal.
  2. After all results have been generated, the notebook examples/compress/plot_compress_results.ipynb can be used to reproduce the figures of Distribution Compression in Near-linear Time.
  3. The script examples/compress/construct_compresspp_coresets.py contains the function recursive_halving that converts a halving algorithm into a thinning algorithm by recursively halving.
  4. The script examples/compress/construct_herding_coresets.py contains the herding function that runs kernel herding algorithm introduced by Yutian Chen, Max Welling, and Alex Smola.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022