A tool to estimate time varying instantaneous reproduction number during epidemics

Related tags

Deep LearningEpiEstim
Overview

EpiEstim

R build status Codecov test coverage DOI

A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper:

@article{Cori2013, author={Cori, A and Ferguson, NM and Fraser, C and Cauchemez, S},
year={2013},
title={{A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics}},
journal={Am. J. Epidemiol.},
doi={10.1093/aje/kwt133},
}

Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez, A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics, American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512.

Citing this code resource

We kindly request that you cite this codebase as follows (BibTeX format):

@misc{Cori2021, author={Cori, A and Kamvar, ZN and Stockwin, J and Jombart, T and Dahlqwist, E and FitzJohn, R and Thompson, R},
year={2021},
title={{EpiEstim v2.2-3: A tool to estimate time varying instantaneous reproduction number during epidemics}},
publisher={GitHub}, journal={GitHub repository},
howpublished = {\url{https://github.com/mrc-ide/EpiEstim}}, commit={c18949d93fe4dcc384cbcae7567a788622efc781},
}

Comments
  • R session aborted when using the Wallinga and Teunis method to estimate case reproduction number

    R session aborted when using the Wallinga and Teunis method to estimate case reproduction number

    Hi Anne Cori,

    I am using EpiEstim to estimate the instantaneous (case) reproduction number for 2009 pandemic influenza A (H1N1) in mainland China. The following are my code:

    rm(list = ls())
    
    load(url("http://tonytsai.name/confirmed_pdm_dec.rda"))
    
    # instantaneous reproduction number estimation for pandemic --------------------
    # using ParametricSI method
    # the instantaneous reproduction number can be estimated after May 22nd, 2009
    EstimateR(dec$cases, T.Start = 22:359, T.End = 28:365, method = "ParametricSI", 
              Mean.SI = 2.6, Std.SI = 1.3, plot = TRUE, leg.pos = xy.coords(1, 3))
    # case reproduction number estimaion for pandemic ------------------------------
    # using the Wallinga and Teunis method
    WT(dec$cases, T.Start = 20:100, T.End = 26:106, method = "ParametricSI", Mean.SI = 2.6, 
       Std.SI = 1.3, plot = TRUE, nSim = 100)
    

    The instantaneous reproduction number can be successfully estimated, but the WT function failed and the R session aborted.

    image

    Could you help me to fix the problem with WT function? Thank you very much.

    opened by caijun 8
  • Consolidate `new-version` branch with `release`

    Consolidate `new-version` branch with `release`

    There are two branches that are ahead of master, new-version and release. It is confusing why both of these should be ahead of master. When comparing these, it appears that release may be slightly ahead of new-version and should be favored: https://github.com/annecori/EpiEstim/compare/new-version..release

    opened by zkamvar 7
  • Dates

    Dates

    proposed changes to allow a Date column to be specified in I, which is then used for plotting --> addresses issue #12

    also, added errors when the estimation is performed to early or too late --> addresses issue #15 and #19

    finally, also allowed EstimateR and WT to take incidence objects (from class incidence from package incidence) as arguments --> addresses issue #13

    opened by annecori 6
  • Confidence Interal of EpiEStim app - identical for 75% & 25%

    Confidence Interal of EpiEStim app - identical for 75% & 25%

    Dr. Robin Thomas asked me to submit this bug report. There is an error in the EpiEstim app which causes the 75% & 25% confidence intervals to show as identical.

    t_start | t_end | Mean(R) | Std(R) | Quantile.0.025(R) | Quantile.0.05(R) | Quantile.0.25(R) | Median(R) | Quantile.0.75(R) | Quantile.0.95(R) | Quantile.0.975(R) -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- 2 | 8 | 1.676272 | 0.976486 | 0.338931 | 0.449985 | 3.524117 | 1.492907 | 3.524117 | 3.524117 | 4.034139 3 | 9 | 2.584599 | 1.163681 | 0.839038 | 1.020117 | 4.750958 | 2.408954 | 4.750958 | 4.750958 | 5.33603 4 | 10 | 2.940135 | 1.134309 | 1.165467 | 1.355705 | 5.003363 | 2.791074 | 5.003363 | 5.003363 | 5.543205 5 | 11 | 2.29199 | 0.892125 | 0.902246 | 1.056114 | 3.929101 | 2.176504 | 3.929101 | 3.929101 | 4.352027 6 | 12 | 2.222825 | 0.803635 | 0.943369 | 1.096749 | 3.693079 | 2.123938 | 3.693079 | 3.693079 | 4.045335 7 | 13 | 2.13141 | 0.730564 | 0.960056 | 1.099175 | 3.455796 | 2.046818 | 3.455796 | 3.455796 | 3.792869 8 | 14 | 3.563511 | 0.88762 | 2.06355 | 2.251539 | 5.157335 | 3.483487 | 5.157335 | 5.157335 | 5.525408 9 | 15 | 2.845731 | 0.687544 | 1.678171 | 1.830796 | 4.07437 | 2.7868 | 4.07437 | 4.07437 | 4.353653 10 | 16 | 2.918638 | 0.626415 | 1.850218 | 1.98553 | 4.028234 | 2.865315 | 4.028234 | 4.028234 | 4.293019

    opened by kcng802 5
  • Error calling `wallinga_teunis` (length mismatch)

    Error calling `wallinga_teunis` (length mismatch)

    Lauren McGough (@unrealmcg) and I have been doing some simple tests to compare Rt methods on synthetic data. We've been running into errors when calling the wallinga_teunis() function in EpiEstim, of the form values must be length <A,> but FUN(X[[1]]) result is length <B>.

    This only happens when n_sim > 0. If n_sim == 0—skipping the CIs—it seems to be fine.

    E.g.:

    Error in vapply(seq_len(config$n_sim), function(i) draw_one_set_of_ancestries(),  : 
      values must be length 19889,
     but FUN(X[[1]]) result is length 19885
    Calls: wallinga_teunis -> t -> vapply
    Execution halted
    

    That error came from the following code, with inline data (just generated from a stochastic SEIR model):

    library(EpiEstim)
    
    incidence <- c(
      1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 4, 1, 4, 3, 2, 2, 2, 3, 7, 8, 3, 0, 1, 0, 3, 3, 3, 2, 1, 1, 3, 1, 3, 2, 0, 0, 3, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 3, 5, 5, 5, 3, 4, 5, 3, 6, 2, 3, 10, 8, 7, 7, 11, 5, 7, 11, 7, 4, 12, 10, 9, 13, 10, 12, 9, 5, 8, 9, 6, 8, 11, 9, 12, 12, 7, 12, 9, 15, 10, 8, 13, 13, 19, 8, 5, 14, 15, 10, 15, 12, 17, 14, 13, 13, 14, 16, 16, 14, 11, 13, 19, 21, 15, 15, 20, 14, 11, 23, 12, 20, 21, 18, 18, 19, 18, 20, 20, 17, 18, 31, 28, 13, 29, 20, 24, 31, 25, 29, 23, 33, 24, 27, 30, 26, 26, 24, 25, 21, 28, 41, 31, 32, 47, 29, 37, 36, 35, 35, 35, 46, 41, 37, 38, 28, 41, 35, 35, 38, 20, 31, 38, 42, 35, 31, 42, 39, 47, 30, 57, 33, 40, 29, 28, 41, 34, 33, 42, 48, 32, 38, 33, 46, 45, 41, 42, 46, 42, 39, 52, 43, 46, 44, 33, 45, 56, 36, 54, 51, 52, 45, 51, 57, 55, 59, 60, 45, 46, 56, 37, 49, 58, 38, 55, 47, 60, 51, 41, 51, 36, 63, 35, 43, 57, 60, 43, 60, 60, 51, 44, 51, 64, 65, 75, 68, 65, 66, 62, 69, 57, 67, 67, 69, 68, 78, 60, 72, 64, 66, 61, 67, 55, 71, 82, 60, 78, 77, 70, 76, 64, 63, 62, 58, 75, 80, 71, 80, 67, 57, 67, 63, 81, 77, 77, 72, 74, 69, 64, 83, 66, 77, 73, 62, 64, 82, 72, 72, 58, 56, 66, 86, 68, 70, 63, 71, 60, 61, 57, 54, 54, 60, 58, 60, 62, 68, 46, 70, 75, 59, 73, 58, 67, 50, 66, 59, 69, 68, 63, 76, 62, 62, 58, 66, 60, 75, 60, 78, 63, 53, 70, 66, 71, 46, 61, 66, 72, 75, 83, 64, 73, 64, 55, 88, 63, 66, 67, 66, 78, 62, 71, 70, 77, 65, 45, 76, 73, 72, 53, 50, 68, 65, 66, 44, 52, 59, 77, 52, 66, 61, 66, 64, 68, 59, 64, 51, 46, 57, 61, 52, 44, 58, 48, 40, 48, 55, 62, 42, 50, 53, 39, 53, 50, 49, 53, 49, 43, 44, 49, 44, 43, 42, 39, 37, 37, 34, 41, 50, 46, 30, 43, 45, 35, 27, 37, 45, 32, 46, 26, 26, 32, 27, 34, 34, 23, 33, 36, 28, 36, 33, 32, 29, 38, 31, 30, 30, 38, 27, 34, 38, 34, 19, 27, 35, 32, 28, 36, 26, 25, 33, 23, 26, 28, 20, 27, 24, 25, 20, 28, 21, 20, 26, 24, 19, 16, 21, 22, 17, 23, 22, 17, 24, 30, 17, 16, 18, 16, 15, 17, 18, 16, 14, 18, 21, 18, 14, 19, 17, 17, 10, 19, 19, 14, 13, 15, 9, 9, 10, 13, 10, 9, 13, 8, 10, 14, 9, 9, 10, 5, 17, 14, 10, 14, 14, 5, 15, 12, 9, 11, 18, 12, 11, 12, 14, 13, 13, 10, 10, 17, 15, 7, 13, 11, 8, 7, 9, 9, 7, 9, 6, 10, 14, 10, 7, 3, 5, 11, 9, 4, 7, 5, 5, 7, 5, 9, 8, 6, 3, 4, 8, 6, 6, 8, 5, 5, 5, 6, 8, 4, 3, 7, 8, 7, 3, 5, 7, 7, 4, 2, 4, 7, 1, 2, 3, 3, 5, 4, 3, 2, 4, 5, 1, 3, 1, 3, 1, 3, 3, 4, 2, 6, 0, 2, 6, 7, 4, 4, 4, 2, 0, 6, 0, 1, 2, 3, 0, 1, 2, 5, 3, 5, 3, 1, 1, 3, 1, 3, 1, 4, 2, 4, 3, 2, 2, 3, 3, 1, 1, 3, 6, 3, 2, 1, 2, 3, 4, 3, 2, 0, 2, 4, 3, 4, 0, 5, 2, 1, 1, 4, 1, 1, 2, 2, 5, 2, 1, 1, 4, 1, 3, 3, 4, 3, 5, 3, 3, 5, 4, 2, 0, 2, 3, 5, 3, 2, 7, 1, 1, 2, 1, 2, 1, 1, 3, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 3, 1, 3, 1, 1, 1, 2, 0, 3, 1, 0, 2, 1, 1, 0, 0, 2, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0
    )
    n_t <- length(incidence)
    
    mean_serial_int <- 1/(1.1 / 5) + 3
    std_serial_int <- mean_serial_int
    
    window_size <- 11
    
    t_start <- seq(2, n_t - 20)
    t_end <- t_start + window_size - 1
    wt_result <- wallinga_teunis(
      incidence, method="parametric_si",
      config = list(
        t_start = t_start,
        t_end = t_end,
        mean_si = mean_serial_int,
        std_si = std_serial_int,
        n_sim = 10
      )
    )
    
    bug 
    opened by edbaskerville 5
  • Quantile.0.25(R) always equals Quantile.0.75(R)

    Quantile.0.25(R) always equals Quantile.0.75(R)

    library(EpiEstim)
    data(Flu2009)
    T <- nrow(Flu2009$incidence)
    t_start <- seq(2, T-6) # starting at 2 as conditional on the past observations
    t_end <- t_start + 6 # adding 6 to get 7-day windows as bounds included in window
    res_weekly <- EpiEstim::estimate_R(Flu2009$incidence, 
                             method="parametric_si",
                             config = EpiEstim::make_config(list(
                                 t_start = t_start,
                                 t_end = t_end,
                                 mean_si = 2.6, 
                                 std_si = 1.5)))
    res_weekly$R
    

    results in :

    t_start t_end   Mean(R)     Std(R) Quantile.0.025(R) Quantile.0.05(R) Quantile.0.25(R) Median(R) Quantile.0.75(R)
    1        2     8 1.7357977 0.40913143        1.02874370       1.12193325        2.4589724 1.7037612        2.4589724
    2        3     9 1.7491678 0.36472669        1.10882231       1.19547993        2.3891206 1.7238839        2.3891206
    

    Other quantiles look OK

    bug 
    opened by robchallen 5
  • Re-initiate tests and implement continuous integration

    Re-initiate tests and implement continuous integration

    Related to #40,

    The new version of EpiEstim currently has no tests and that's.... not good. In fact, with the current master branch, Example 2 fails.

    Regarding tests, the current setup is relatively reasonable since they do not rely on randomization to generate the data, but we need to find out why Example 2 is no good.

    This could have been caught earlier with continuous integration, so I would suggest to use the following to create it.

    usethis::use_travis()
    usethis::use_appveyor()
    
    opened by zkamvar 5
  • Unreasonably high value of instantaneous reproduction number estimation?

    Unreasonably high value of instantaneous reproduction number estimation?

    Hi Anne Cori,

    I am using EpiEstim to estimate the instantaneous (case) reproduction number during post-pandemic period for 2009 pandemic influenza A (H1N1) in mainland China. The EstimateR function successfully estimated the R(t); however the maximal estimation of R(t) is 47.5, which is so large that I don't think it makes sense. Could you help me to explain why such a large estimation of R(t) could be produced? Thank you very much.

    > rm(list = ls())
    > 
    > load(url("http://tonytsai.name/confirmed_post-pdm_dec.rda"))
    > 
    > # instantaneous reproduction number estimation for post-pandemic --------------------
    > # using ParametricSI method
    > # the instantaneous reproduction number can be estimated after May 2nd, 2010
    > x <- EstimateR(dec$cases, T.Start = 2:359, T.End = 8:365, method = "ParametricSI", 
    +                Mean.SI = 2.6, Std.SI = 1.3, plot = TRUE, leg.pos = xy.coords(1, 3))
    > max(x$R$`Mean(R)`)
    [1] 47.54329
    

    image

    opened by caijun 5
  • Wallinga fix

    Wallinga fix

    Pull Request Closes #92

    • Fixes a bug where draw_one_set_of_ancestries would return a result of the wrong length. It would calculate the length based on the time window, but everything else is based on T. I am not familiar with the actual maths involved here, so please do check this is correct.

    • Fixes a bug where ot was not defined.

    How has this been tested Examples were given in #92, and these now work correctly.

    Checklist

    • [X] I have added tests to prove my changes work
    • [X] I have added documentation where required
    • [X] I have updated NEWS.md with a short description of my change
    opened by jstockwin 4
  • add sample_posterior_R function

    add sample_posterior_R function

    This will fix #70, but I've modified it so that it takes from a specific time window of R:

    
    library("EpiEstim")
    #> Registered S3 methods overwritten by 'ggplot2':
    #>   method         from 
    #>   [.quosures     rlang
    #>   c.quosures     rlang
    #>   print.quosures rlang
    data("Flu2009")
    
    res <- estimate_R(incid = Flu2009$incidence, 
                      method = "non_parametric_si",
                      config = make_config(list(si_distr = Flu2009$si_distr)))
    #> Default config will estimate R on weekly sliding windows.
    #>     To change this change the t_start and t_end arguments.
    
    hist(sample_posterior_R(res, n = 5000, window = 1L), col = "grey",
         main = "5000 samples of R from the first weekly window",
         xlab = "R",
         xlim = c(0, 4))
    

    
    hist(sample_posterior_R(res, n = 5000, window = 10L), col = "grey",
         main = "5000 samples of R from the tenth weekly window",
         xlab = "R",
         xlim = c(0, 4))
    

    win_col <- ifelse(seq(nrow(res$R)) %in% c(1, 10), "red", "black")
    plot(res, "R") + ggplot2::geom_point(color = win_col)
    

    Created on 2019-06-06 by the reprex package (v0.3.0)

    opened by zkamvar 4
  • Tag release of 2.2-3

    Tag release of 2.2-3

    Sorry I've been absent on this. It would be good to tag the new version as it was released to CRAN. I think tagging the most recent commit with 2.2-3 would be sufficient.

    opened by zkamvar 3
  • Use incidence2 inputs

    Use incidence2 inputs

    In line with https://github.com/mrc-ide/EpiEstim/issues/152, it would be useful to provide an S3 method for incidence2 inputs. The incidence2 package is meant as a replacement for incidence, and offers more flexibility. Some issues to think about / handle:

    • handle multiple stratifications
    • handle non-days time intervals (may need postponing into a separate issue)
    enhancement 
    opened by thibautjombart 0
  • Turn estimate_R into a generic with S3 methods

    Turn estimate_R into a generic with S3 methods

    Turning the main function into a generic will facilitate providing dedicated functions for different types of inputs, e.g. an integer vector, and incidence, or an incidence2 object.

    enhancement 
    opened by thibautjombart 0
  • estimate_advantage is not available if the package is installed using install.packages()

    estimate_advantage is not available if the package is installed using install.packages()

    Hi!

    First of all thank you so much for this great package! I downloaded EpiEstim a few months ago using install.packages() and I've only been using the estimate_R function so far and that has worked fine. Today, I needed to use the estimate_advantage function but that gave me an error saying that the function couldn't be found. I couldn't access the vignette associated with it (MV_EpiEstim_vignette) either. I tried uninstalling and reinstalling it but that didn't fix the problem so I uninstalled it again and then installed it using devtools::install_github instead and that worked. I'm not sure if I did something weird when I installed it initially, but I thought I should let you know!

    Best, Anjalika

    opened by anjalika-nande 0
  • Return posterior draws for R in estimate_R

    Return posterior draws for R in estimate_R

    estimate_R currently returns the mean and standard deviation of R, which then can be used to draw samples from the Gamma. It would be convenient to have an option that the posterior draws from estimate_R are returned directly for subsequent use in the projections package

    opened by nbanho 0
Releases(2.2-3)
Owner
MRC Centre for Global Infectious Disease Analysis
MRC Centre hosted within the Department of Infectious Disease Epidemiology at Imperial College London
MRC Centre for Global Infectious Disease Analysis
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022