A tool to estimate time varying instantaneous reproduction number during epidemics

Related tags

Deep LearningEpiEstim
Overview

EpiEstim

R build status Codecov test coverage DOI

A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper:

@article{Cori2013, author={Cori, A and Ferguson, NM and Fraser, C and Cauchemez, S},
year={2013},
title={{A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics}},
journal={Am. J. Epidemiol.},
doi={10.1093/aje/kwt133},
}

Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez, A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics, American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512.

Citing this code resource

We kindly request that you cite this codebase as follows (BibTeX format):

@misc{Cori2021, author={Cori, A and Kamvar, ZN and Stockwin, J and Jombart, T and Dahlqwist, E and FitzJohn, R and Thompson, R},
year={2021},
title={{EpiEstim v2.2-3: A tool to estimate time varying instantaneous reproduction number during epidemics}},
publisher={GitHub}, journal={GitHub repository},
howpublished = {\url{https://github.com/mrc-ide/EpiEstim}}, commit={c18949d93fe4dcc384cbcae7567a788622efc781},
}

Comments
  • R session aborted when using the Wallinga and Teunis method to estimate case reproduction number

    R session aborted when using the Wallinga and Teunis method to estimate case reproduction number

    Hi Anne Cori,

    I am using EpiEstim to estimate the instantaneous (case) reproduction number for 2009 pandemic influenza A (H1N1) in mainland China. The following are my code:

    rm(list = ls())
    
    load(url("http://tonytsai.name/confirmed_pdm_dec.rda"))
    
    # instantaneous reproduction number estimation for pandemic --------------------
    # using ParametricSI method
    # the instantaneous reproduction number can be estimated after May 22nd, 2009
    EstimateR(dec$cases, T.Start = 22:359, T.End = 28:365, method = "ParametricSI", 
              Mean.SI = 2.6, Std.SI = 1.3, plot = TRUE, leg.pos = xy.coords(1, 3))
    # case reproduction number estimaion for pandemic ------------------------------
    # using the Wallinga and Teunis method
    WT(dec$cases, T.Start = 20:100, T.End = 26:106, method = "ParametricSI", Mean.SI = 2.6, 
       Std.SI = 1.3, plot = TRUE, nSim = 100)
    

    The instantaneous reproduction number can be successfully estimated, but the WT function failed and the R session aborted.

    image

    Could you help me to fix the problem with WT function? Thank you very much.

    opened by caijun 8
  • Consolidate `new-version` branch with `release`

    Consolidate `new-version` branch with `release`

    There are two branches that are ahead of master, new-version and release. It is confusing why both of these should be ahead of master. When comparing these, it appears that release may be slightly ahead of new-version and should be favored: https://github.com/annecori/EpiEstim/compare/new-version..release

    opened by zkamvar 7
  • Dates

    Dates

    proposed changes to allow a Date column to be specified in I, which is then used for plotting --> addresses issue #12

    also, added errors when the estimation is performed to early or too late --> addresses issue #15 and #19

    finally, also allowed EstimateR and WT to take incidence objects (from class incidence from package incidence) as arguments --> addresses issue #13

    opened by annecori 6
  • Confidence Interal of EpiEStim app - identical for 75% & 25%

    Confidence Interal of EpiEStim app - identical for 75% & 25%

    Dr. Robin Thomas asked me to submit this bug report. There is an error in the EpiEstim app which causes the 75% & 25% confidence intervals to show as identical.

    t_start | t_end | Mean(R) | Std(R) | Quantile.0.025(R) | Quantile.0.05(R) | Quantile.0.25(R) | Median(R) | Quantile.0.75(R) | Quantile.0.95(R) | Quantile.0.975(R) -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- 2 | 8 | 1.676272 | 0.976486 | 0.338931 | 0.449985 | 3.524117 | 1.492907 | 3.524117 | 3.524117 | 4.034139 3 | 9 | 2.584599 | 1.163681 | 0.839038 | 1.020117 | 4.750958 | 2.408954 | 4.750958 | 4.750958 | 5.33603 4 | 10 | 2.940135 | 1.134309 | 1.165467 | 1.355705 | 5.003363 | 2.791074 | 5.003363 | 5.003363 | 5.543205 5 | 11 | 2.29199 | 0.892125 | 0.902246 | 1.056114 | 3.929101 | 2.176504 | 3.929101 | 3.929101 | 4.352027 6 | 12 | 2.222825 | 0.803635 | 0.943369 | 1.096749 | 3.693079 | 2.123938 | 3.693079 | 3.693079 | 4.045335 7 | 13 | 2.13141 | 0.730564 | 0.960056 | 1.099175 | 3.455796 | 2.046818 | 3.455796 | 3.455796 | 3.792869 8 | 14 | 3.563511 | 0.88762 | 2.06355 | 2.251539 | 5.157335 | 3.483487 | 5.157335 | 5.157335 | 5.525408 9 | 15 | 2.845731 | 0.687544 | 1.678171 | 1.830796 | 4.07437 | 2.7868 | 4.07437 | 4.07437 | 4.353653 10 | 16 | 2.918638 | 0.626415 | 1.850218 | 1.98553 | 4.028234 | 2.865315 | 4.028234 | 4.028234 | 4.293019

    opened by kcng802 5
  • Error calling `wallinga_teunis` (length mismatch)

    Error calling `wallinga_teunis` (length mismatch)

    Lauren McGough (@unrealmcg) and I have been doing some simple tests to compare Rt methods on synthetic data. We've been running into errors when calling the wallinga_teunis() function in EpiEstim, of the form values must be length <A,> but FUN(X[[1]]) result is length <B>.

    This only happens when n_sim > 0. If n_sim == 0—skipping the CIs—it seems to be fine.

    E.g.:

    Error in vapply(seq_len(config$n_sim), function(i) draw_one_set_of_ancestries(),  : 
      values must be length 19889,
     but FUN(X[[1]]) result is length 19885
    Calls: wallinga_teunis -> t -> vapply
    Execution halted
    

    That error came from the following code, with inline data (just generated from a stochastic SEIR model):

    library(EpiEstim)
    
    incidence <- c(
      1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 4, 1, 4, 3, 2, 2, 2, 3, 7, 8, 3, 0, 1, 0, 3, 3, 3, 2, 1, 1, 3, 1, 3, 2, 0, 0, 3, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 3, 5, 5, 5, 3, 4, 5, 3, 6, 2, 3, 10, 8, 7, 7, 11, 5, 7, 11, 7, 4, 12, 10, 9, 13, 10, 12, 9, 5, 8, 9, 6, 8, 11, 9, 12, 12, 7, 12, 9, 15, 10, 8, 13, 13, 19, 8, 5, 14, 15, 10, 15, 12, 17, 14, 13, 13, 14, 16, 16, 14, 11, 13, 19, 21, 15, 15, 20, 14, 11, 23, 12, 20, 21, 18, 18, 19, 18, 20, 20, 17, 18, 31, 28, 13, 29, 20, 24, 31, 25, 29, 23, 33, 24, 27, 30, 26, 26, 24, 25, 21, 28, 41, 31, 32, 47, 29, 37, 36, 35, 35, 35, 46, 41, 37, 38, 28, 41, 35, 35, 38, 20, 31, 38, 42, 35, 31, 42, 39, 47, 30, 57, 33, 40, 29, 28, 41, 34, 33, 42, 48, 32, 38, 33, 46, 45, 41, 42, 46, 42, 39, 52, 43, 46, 44, 33, 45, 56, 36, 54, 51, 52, 45, 51, 57, 55, 59, 60, 45, 46, 56, 37, 49, 58, 38, 55, 47, 60, 51, 41, 51, 36, 63, 35, 43, 57, 60, 43, 60, 60, 51, 44, 51, 64, 65, 75, 68, 65, 66, 62, 69, 57, 67, 67, 69, 68, 78, 60, 72, 64, 66, 61, 67, 55, 71, 82, 60, 78, 77, 70, 76, 64, 63, 62, 58, 75, 80, 71, 80, 67, 57, 67, 63, 81, 77, 77, 72, 74, 69, 64, 83, 66, 77, 73, 62, 64, 82, 72, 72, 58, 56, 66, 86, 68, 70, 63, 71, 60, 61, 57, 54, 54, 60, 58, 60, 62, 68, 46, 70, 75, 59, 73, 58, 67, 50, 66, 59, 69, 68, 63, 76, 62, 62, 58, 66, 60, 75, 60, 78, 63, 53, 70, 66, 71, 46, 61, 66, 72, 75, 83, 64, 73, 64, 55, 88, 63, 66, 67, 66, 78, 62, 71, 70, 77, 65, 45, 76, 73, 72, 53, 50, 68, 65, 66, 44, 52, 59, 77, 52, 66, 61, 66, 64, 68, 59, 64, 51, 46, 57, 61, 52, 44, 58, 48, 40, 48, 55, 62, 42, 50, 53, 39, 53, 50, 49, 53, 49, 43, 44, 49, 44, 43, 42, 39, 37, 37, 34, 41, 50, 46, 30, 43, 45, 35, 27, 37, 45, 32, 46, 26, 26, 32, 27, 34, 34, 23, 33, 36, 28, 36, 33, 32, 29, 38, 31, 30, 30, 38, 27, 34, 38, 34, 19, 27, 35, 32, 28, 36, 26, 25, 33, 23, 26, 28, 20, 27, 24, 25, 20, 28, 21, 20, 26, 24, 19, 16, 21, 22, 17, 23, 22, 17, 24, 30, 17, 16, 18, 16, 15, 17, 18, 16, 14, 18, 21, 18, 14, 19, 17, 17, 10, 19, 19, 14, 13, 15, 9, 9, 10, 13, 10, 9, 13, 8, 10, 14, 9, 9, 10, 5, 17, 14, 10, 14, 14, 5, 15, 12, 9, 11, 18, 12, 11, 12, 14, 13, 13, 10, 10, 17, 15, 7, 13, 11, 8, 7, 9, 9, 7, 9, 6, 10, 14, 10, 7, 3, 5, 11, 9, 4, 7, 5, 5, 7, 5, 9, 8, 6, 3, 4, 8, 6, 6, 8, 5, 5, 5, 6, 8, 4, 3, 7, 8, 7, 3, 5, 7, 7, 4, 2, 4, 7, 1, 2, 3, 3, 5, 4, 3, 2, 4, 5, 1, 3, 1, 3, 1, 3, 3, 4, 2, 6, 0, 2, 6, 7, 4, 4, 4, 2, 0, 6, 0, 1, 2, 3, 0, 1, 2, 5, 3, 5, 3, 1, 1, 3, 1, 3, 1, 4, 2, 4, 3, 2, 2, 3, 3, 1, 1, 3, 6, 3, 2, 1, 2, 3, 4, 3, 2, 0, 2, 4, 3, 4, 0, 5, 2, 1, 1, 4, 1, 1, 2, 2, 5, 2, 1, 1, 4, 1, 3, 3, 4, 3, 5, 3, 3, 5, 4, 2, 0, 2, 3, 5, 3, 2, 7, 1, 1, 2, 1, 2, 1, 1, 3, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 3, 1, 3, 1, 1, 1, 2, 0, 3, 1, 0, 2, 1, 1, 0, 0, 2, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0
    )
    n_t <- length(incidence)
    
    mean_serial_int <- 1/(1.1 / 5) + 3
    std_serial_int <- mean_serial_int
    
    window_size <- 11
    
    t_start <- seq(2, n_t - 20)
    t_end <- t_start + window_size - 1
    wt_result <- wallinga_teunis(
      incidence, method="parametric_si",
      config = list(
        t_start = t_start,
        t_end = t_end,
        mean_si = mean_serial_int,
        std_si = std_serial_int,
        n_sim = 10
      )
    )
    
    bug 
    opened by edbaskerville 5
  • Quantile.0.25(R) always equals Quantile.0.75(R)

    Quantile.0.25(R) always equals Quantile.0.75(R)

    library(EpiEstim)
    data(Flu2009)
    T <- nrow(Flu2009$incidence)
    t_start <- seq(2, T-6) # starting at 2 as conditional on the past observations
    t_end <- t_start + 6 # adding 6 to get 7-day windows as bounds included in window
    res_weekly <- EpiEstim::estimate_R(Flu2009$incidence, 
                             method="parametric_si",
                             config = EpiEstim::make_config(list(
                                 t_start = t_start,
                                 t_end = t_end,
                                 mean_si = 2.6, 
                                 std_si = 1.5)))
    res_weekly$R
    

    results in :

    t_start t_end   Mean(R)     Std(R) Quantile.0.025(R) Quantile.0.05(R) Quantile.0.25(R) Median(R) Quantile.0.75(R)
    1        2     8 1.7357977 0.40913143        1.02874370       1.12193325        2.4589724 1.7037612        2.4589724
    2        3     9 1.7491678 0.36472669        1.10882231       1.19547993        2.3891206 1.7238839        2.3891206
    

    Other quantiles look OK

    bug 
    opened by robchallen 5
  • Re-initiate tests and implement continuous integration

    Re-initiate tests and implement continuous integration

    Related to #40,

    The new version of EpiEstim currently has no tests and that's.... not good. In fact, with the current master branch, Example 2 fails.

    Regarding tests, the current setup is relatively reasonable since they do not rely on randomization to generate the data, but we need to find out why Example 2 is no good.

    This could have been caught earlier with continuous integration, so I would suggest to use the following to create it.

    usethis::use_travis()
    usethis::use_appveyor()
    
    opened by zkamvar 5
  • Unreasonably high value of instantaneous reproduction number estimation?

    Unreasonably high value of instantaneous reproduction number estimation?

    Hi Anne Cori,

    I am using EpiEstim to estimate the instantaneous (case) reproduction number during post-pandemic period for 2009 pandemic influenza A (H1N1) in mainland China. The EstimateR function successfully estimated the R(t); however the maximal estimation of R(t) is 47.5, which is so large that I don't think it makes sense. Could you help me to explain why such a large estimation of R(t) could be produced? Thank you very much.

    > rm(list = ls())
    > 
    > load(url("http://tonytsai.name/confirmed_post-pdm_dec.rda"))
    > 
    > # instantaneous reproduction number estimation for post-pandemic --------------------
    > # using ParametricSI method
    > # the instantaneous reproduction number can be estimated after May 2nd, 2010
    > x <- EstimateR(dec$cases, T.Start = 2:359, T.End = 8:365, method = "ParametricSI", 
    +                Mean.SI = 2.6, Std.SI = 1.3, plot = TRUE, leg.pos = xy.coords(1, 3))
    > max(x$R$`Mean(R)`)
    [1] 47.54329
    

    image

    opened by caijun 5
  • Wallinga fix

    Wallinga fix

    Pull Request Closes #92

    • Fixes a bug where draw_one_set_of_ancestries would return a result of the wrong length. It would calculate the length based on the time window, but everything else is based on T. I am not familiar with the actual maths involved here, so please do check this is correct.

    • Fixes a bug where ot was not defined.

    How has this been tested Examples were given in #92, and these now work correctly.

    Checklist

    • [X] I have added tests to prove my changes work
    • [X] I have added documentation where required
    • [X] I have updated NEWS.md with a short description of my change
    opened by jstockwin 4
  • add sample_posterior_R function

    add sample_posterior_R function

    This will fix #70, but I've modified it so that it takes from a specific time window of R:

    
    library("EpiEstim")
    #> Registered S3 methods overwritten by 'ggplot2':
    #>   method         from 
    #>   [.quosures     rlang
    #>   c.quosures     rlang
    #>   print.quosures rlang
    data("Flu2009")
    
    res <- estimate_R(incid = Flu2009$incidence, 
                      method = "non_parametric_si",
                      config = make_config(list(si_distr = Flu2009$si_distr)))
    #> Default config will estimate R on weekly sliding windows.
    #>     To change this change the t_start and t_end arguments.
    
    hist(sample_posterior_R(res, n = 5000, window = 1L), col = "grey",
         main = "5000 samples of R from the first weekly window",
         xlab = "R",
         xlim = c(0, 4))
    

    
    hist(sample_posterior_R(res, n = 5000, window = 10L), col = "grey",
         main = "5000 samples of R from the tenth weekly window",
         xlab = "R",
         xlim = c(0, 4))
    

    win_col <- ifelse(seq(nrow(res$R)) %in% c(1, 10), "red", "black")
    plot(res, "R") + ggplot2::geom_point(color = win_col)
    

    Created on 2019-06-06 by the reprex package (v0.3.0)

    opened by zkamvar 4
  • Tag release of 2.2-3

    Tag release of 2.2-3

    Sorry I've been absent on this. It would be good to tag the new version as it was released to CRAN. I think tagging the most recent commit with 2.2-3 would be sufficient.

    opened by zkamvar 3
  • Use incidence2 inputs

    Use incidence2 inputs

    In line with https://github.com/mrc-ide/EpiEstim/issues/152, it would be useful to provide an S3 method for incidence2 inputs. The incidence2 package is meant as a replacement for incidence, and offers more flexibility. Some issues to think about / handle:

    • handle multiple stratifications
    • handle non-days time intervals (may need postponing into a separate issue)
    enhancement 
    opened by thibautjombart 0
  • Turn estimate_R into a generic with S3 methods

    Turn estimate_R into a generic with S3 methods

    Turning the main function into a generic will facilitate providing dedicated functions for different types of inputs, e.g. an integer vector, and incidence, or an incidence2 object.

    enhancement 
    opened by thibautjombart 0
  • estimate_advantage is not available if the package is installed using install.packages()

    estimate_advantage is not available if the package is installed using install.packages()

    Hi!

    First of all thank you so much for this great package! I downloaded EpiEstim a few months ago using install.packages() and I've only been using the estimate_R function so far and that has worked fine. Today, I needed to use the estimate_advantage function but that gave me an error saying that the function couldn't be found. I couldn't access the vignette associated with it (MV_EpiEstim_vignette) either. I tried uninstalling and reinstalling it but that didn't fix the problem so I uninstalled it again and then installed it using devtools::install_github instead and that worked. I'm not sure if I did something weird when I installed it initially, but I thought I should let you know!

    Best, Anjalika

    opened by anjalika-nande 0
  • Return posterior draws for R in estimate_R

    Return posterior draws for R in estimate_R

    estimate_R currently returns the mean and standard deviation of R, which then can be used to draw samples from the Gamma. It would be convenient to have an option that the posterior draws from estimate_R are returned directly for subsequent use in the projections package

    opened by nbanho 0
Releases(2.2-3)
Owner
MRC Centre for Global Infectious Disease Analysis
MRC Centre hosted within the Department of Infectious Disease Epidemiology at Imperial College London
MRC Centre for Global Infectious Disease Analysis
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022