Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

Overview

dcf-game-infrastructure

All the components necessary to run a game of the OOO DC CTF finals.

Authors: adamd, hacopo, Erik Trickel, Zardus, and bboe

Design Philosophy

This repo contains all the game components necessary to run an Attack-Defense CTF that OOO used from 2018--2021.

The design is based on adamd's experience building the ictf-framework.

There are fundamental tenenats that we try to follow in the design of the system:

Spoke component model

The communication design of the components in the system (which you can kind of think of as micro-services) is a "spoke" model, where every component talks to the database (through a RESTish API), and no component directly talks to any other.

In this way, each component can be updated separately and can also be scaled independently using our k8s hosting.

This also made testing of each component easier, as the only dependence on a component is on the state of the database.

The only exception to this is the patchbot (the component that needs to test the patches submitted by the teams).

The database API puts the patchbot testing jobs into an RQ (Redis Queue), which all the patchbot workers pull jobs from.

Append-only database design

Fundamentally, a CTF database needs to calculate scores (that's essentially what the teams care about).

Prior design approaches that we've used would have a points or score column in the team table, and when they acquired or lost points, the app code would change this value.

However, many crazy things can happen during a CTF: recalculating scores or missed flags, even changing the scoring functions itself.

These can be difficult to handle depending on how the system is developed.

Therefore, we created a completely append-only database model, where no data in the DB is ever deleted or changed.

Even things like service status (the GOOD, OK, LOW, BAD that we used) is not a column in the services table. Every change of status would created a new StatusIndicator row, and the services would pull the latest version from this table.

Event model

Related to the append-only database design, everything in the database was represented by events.

The database would store all game events (in our game over the years was SLA_SCRIPT, FLAG_STOLEN, SET_FLAG, KOH_SCORE_FETCH, KOH_RANKING, PCAP_CREATED, PCAP_RELEASED, and STEALTH).

Then, the state of the game is based on these events.

An additional benefit is that these events could be shipped to the teams as part of the game_state.json.

Separate k8s clusters

How we ran this is with two k8s clusters: an admin cluster and a game cluster.

The admin cluster ran all of these components.

The game cluster ran all of the CTF challenges.

We used this design to do things like drop flags on the services. The flagbot used kubectl to drop a flag onto a service running in the other cluster.

This also allowed us to lock down the game cluster so that the vulnerable services couldn't make external requests, could be scaled separately, etc.

Install Requirements

This package is pip installable, and installs all dependencies. Do the following in a virtualenv:

$ pip install -e .

NOTE: If you want to connect to a mysql server (such as in prod or when deving against a mysql server), install the mysqlclient dependency like so:

$ pip install -e .[mysql]

Testing

Make sure the tests pass before you commit, and add new test cases in test for new features.

Note the database API now checks that the timezone is in UTC, so you'll need to specify that to run the tests:

$ TZ=UTC nosetests -v

Local Dev

If you're using tmux, I created a script local_dev.sh that will run a database-api, database-api frontend, team-interface backend, team-interface frontend, gamebot, and an ipython session with a database client created.

Just run the following

$ ./local_dev.sh

Deploy to prod

Build and -p push the image to production registry.

$ ./deploy.sh -p

Won't -r restart the running services, need to do:

$ ./deploy.sh -p -r

database-api

This has the tables for the database, a REST API to access it, and a python client to access the REST API.

See ooogame/database for details.

flagbot

Responsible for putting new flags into all the services for every game tick.

See ooogame/flagbot for details.

fresh-flagbot

Responsible for putting a new flags into a pod when it first comes up (from a team patching the service).

See ooogame/fresh_flagbot for details.

gamebot

Responsible for incrementing the game's ticks.

See ooogame/gamebot for details.

koh-scorebot

Responsible for extracting the King of the Hill (koh) scores from all the koh pods every tick, and submitting them to the database.

See ooogame/koh_scorebot for details.

team-interface

Responsible for providing an interface to the teams so that they can submit flags, get pcaps, upload patches, and get their patch status. Split into a backend flask REST API, which essentially wraps the database-api, and a React frontend.

See ooogame/team_interface for details.

pcapbot

Responsible for picking up all the newly generated pcaps, anonymize them, and if the service is releasing pcaps then release them.

See ooogame/pcapbot for details.

gamestatebot

Responsible for creating the game state at every new tick and storing them in the nfs, and release them publicly.

See ooogame/gamestatebot for details.

This is also the component that pushes data to the public scoreboard

Owner
Order of the Overflow
Order of the Overflow
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022