Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

Related tags

Deep Learningneurmips
Overview

NeurMips: Neural Mixture of Planar Experts for View Synthesis

This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture of Planar Experts for View Synthesis", CVPR 2022.

Paper | Project page | Video

Overview

🌱 Prerequisites

  • OS: Ubuntu 20.04.4 LTS
  • GPU: NVIDIA TITAN RTX
  • Python package manager conda

🌱 Setup

Datasets

Download and put datasets under folder data/ by running:

bash run/dataset.sh

For more details of file structure and camera convention, please refer to Dataset.

Environment

Install all python packages for training and evaluation with conda environment setup file:

conda env create -f environment.yml
conda activate neurmips

CUDA extension installation

Compile the extension directly by running:

cd cuda/
python setup.py develop

Note that if you need to modify this CUDA code, simply compile again after your modification.

Pretrained models (optional)

Download pretrained model weights for evaluation without training from scratch:

bash run/checkpoints.sh

🌱 Usage

We provide hyperparameters for each experiment in config file configs/*.yaml, which is used for training and evaluation. For example, replica-kitchen.yaml corresponds to Replica dataset Kitchen scene, and tat-barn.yaml corresponds to Tanks&Temple dataset Barn scene.

Training

Train the teacher and experts model by running:

bash run/train.sh [config]
# example: bash run/train.sh replica-kitchen

Evaluation

Render testing images and evaluate metrics (i.e. PSNR, SSIM, LPIPS) by running:

bash run/eval.sh [config]
# example: bash run/eval.sh replica-kitchen

The rendered images are put under folder output_images/[config]/experts/color/valid/

CUDA Acceleration

To render testing images with optimized CUDA code by running:

bash run/eval_fast.sh [config]
# example: bash run/eval_fast.sh replica-kitchen

The rendered images are put under folder output_images/[config]/experts_cuda/color/valid/

BibTex

@inproceedings{lin2022neurmips,
  title={NeurMiPs: Neural Mixture of Planar Experts for View Synthesis},
  author = {Lin, Zhi-Hao and Ma, Wei-Chiu and Hsu, Hao-Yu and Wang, Yu-Chiang Frank and Wang, Shenlong},
  year={2022},
  booktitle={CVPR},
}
Owner
James Lin
NTUEE 2015~2019
James Lin
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 180 Jan 21, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 1 Jan 16, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

50 Jan 16, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

15 Jan 30, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 1 Jan 07, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.1k Jan 21, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 01, 2021
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 12, 2021
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 6 Jan 17, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 62 Jan 14, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

3 Jan 16, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

4 Nov 20, 2021
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 414 Jan 26, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 1 Jan 05, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

2 Jan 10, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4k Feb 12, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 2 Dec 27, 2021
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 148 Jan 16, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

1 Dec 03, 2021
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

4 Jan 25, 2022