Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

Overview

TEMOS: TExt to MOtionS

Generating diverse human motions from textual descriptions

Description

Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions".

Please visit our webpage for more details.

teaser_lightteaser_dark

Bibtex

If you find this code useful in your research, please cite:

@article{petrovich22temos,
  title     = {{TEMOS}: Generating diverse human motions from textual descriptions},
  author    = {Petrovich, Mathis and Black, Michael J. and Varol, G{\"u}l},
  journal   = {arXiv},
  month     = {April},
  year      = {2022}
}

You can also put a star ⭐ , if the code is useful to you.

Installation πŸ‘·

1. Create conda environment

conda create python=3.9 --name temos
conda activate temos

Install PyTorch 1.10 inside the conda environnement, and install the following packages:

pip install pytorch_lightning --upgrade
pip install torchmetrics==0.7
pip install hydra-core --upgrade
pip install hydra_colorlog --upgrade
pip install shortuuid
pip install tqdm
pip install pandas
pip install transformers
pip install psutil
pip install einops

The code was tested on Python 3.9.7 and PyTorch 1.10.0.

2. Download the datasets

KIT Motion-Language dataset

Be sure to read and follow their license agreements, and cite accordingly.

Use the code from Ghosh et al. or JL2P to download and prepare the kit dataset (extraction of xyz joints coodinates data from axis-angle Master Motor Map). Move or copy all the files which ends with "_meta.json", "_annotations.json" and "_fke.csv" inside the datasets/kit folder. "

AMASS dataset

WIP: instructions to be released soon

3. Download text model dependencies

Download distilbert from Hugging Face

cd deps/
git lfs install
git clone https://huggingface.co/distilbert-base-uncased
cd ..

4. SMPL body model

WIP: instructions to be released soon

5. (Optional) Donwload pre-trained models

WIP: instructions to be released soon

How to train TEMOS πŸš€

The command to launch a training experiment is the folowing:

python train.py [OPTIONS]

The parsing is done by using the powerful Hydra library. You can override anything in the configuration by passing arguments like foo=value or foo.bar=value.

Experiment path

Each training will create a unique output directory (referred to as FOLDER below), where logs, configuations and checkpoints are stored.

By default it is defined as outputs/${data.dataname}/${experiment}/${run_id} with data.dataname the name of the dataset (see examples below), experiment=baseline and run_id a 8 unique random alpha-numeric identifier for the run (everything can be overridden if needed).

This folder is printed during logging, it should look like outputs/kit-mmm-xyz/baseline/3gn7h7v6/.

Some optional parameters

Datasets

  • data=kit-mmm-xyz: KIT-ML motions processed by the MMM framework (as in the original data) loaded as xyz joint coordinates (after axis-angle transformation β†’ xyz) (by default)
  • data=kit-amass-rot: KIT-ML motions loaded as SMPL rotations and translations, from AMASS (processed with MoSh++)
  • data=kit-amass-xyz: KIT-ML motions loaded as xyz joint coordinates, from AMASS (processed with MoSh++) after passing through a SMPL layer and regressing the correct joints.

Training

  • trainer=gpu: training with CUDA, on an automatically selected GPU (default)
  • trainer=cpu: training on the CPU

How to generate motions with TEMOS

Dataset splits

To get results comparable to previous work, we use the same splits as in Language2Pose and Ghosh et al.. To be explicit, and not rely on random seeds, you can find the list of id-files in datasets/kit-splits/ (train/val/test).

When sampling Ghosh et al.'s motions with their code, I noticed that their dataloader is missing some sequences (see the discussion here). In order to compare all the methods with the same test set, we use the 520 sequences produced by Ghosh et al. code for the test set (instead of the 587 sequences). This split is refered as gtest (for "Ghosh test"). It is used per default in the sampling/evaluation/rendering code. You can change this set by specifying split=SPLIT in each command line.

You can also find in datasets/kit-splits/, the split used for the human-study (human-study) and the split used for the visuals of the paper (visu).

Sampling/generating motions

The command line to sample one motion per sequence is the following:

python sample.py folder=FOLDER [OPTIONS]

This command will create the folder FOLDER/samples/SPLIT and save the motions in the npy format.

Some optional parameters

  • mean=false: Take the mean value for the latent vector, instead of sampling (default is false)
  • number_of_samples=X: Generate X motions (by default it generates only one)
  • fact=X: Multiplies sigma by X during sampling (1.0 by default, diversity can be increased when fact>1)

Model trained on SMPL rotations

If your model has been trained with data=kit-amass-rot, it produces SMPL rotations and translations. In this case, you can specify the type of data you want to save after passing through the SMPL layer.

  • jointstype=mmm: Generate xyz joints compatible with the MMM bodies (by default). This gives skeletons comparable to data=kit-mmm-xyz (needed for evaluation).
  • jointstype=vertices: Generate human body meshes (needed for rendering).

Evaluating TEMOS (and prior works)

To evaluate TEMOS on the metrics defined in the paper, you must generate motions first (see above), and then run:

python evaluate.py folder=FOLDER [OPTIONS]

This will compute and store the metrics in the file FOLDER/samples/metrics_SPLIT in a yaml format.

Some optional parameters

Same parameters as in sample.py, it will choose the right directories for you. In the case of evaluating with number_of_samples>1, the script will compute two metrics metrics_gtest_multi_avg (the average of single metrics) and metrics_gtest_multi_best (chosing the best output for each motion). Please check the paper for more details.

Model trained on SMPL rotations

Currently, evaluation is only implemented on skeletons with MMM format. You must therefore use jointstype=mmm during sampling.

Evaluating prior works

WIP: the proper instructions and code will be available soon.

To give an overview:

  1. Generate motions with their code (it is still in the rifke feature space)
  2. Save them in xyz format (I "hack" their render script, to save them in xyz npy format instead of rendering)
  3. Load them into the evaluation code (instead of loading TEMOS motions).

Rendering motions

To get the visuals of the paper, I use Blender 2.93. The setup is not trivial (installation + running), I do my best to explain the process but don't hesitate to tell me if you have a problem.

Instalation

The goal is to be able to install blender so that it can be used with python scripts (so we can use ``import bpy''). There seem to be many different ways to do this, I will explain the one I use and understand (feel free to use other methods or suggest an easier way). The installation of Blender will be done as a standalone package. To use my scripts, we will run blender in the background, and the python executable in blender will run the script.

In any case, after the installation, please do step 5. to install the dependencies in the python environment.

  1. Please follow the instructions to install blender 2.93 on your operating system. Please install exactly this version.
  2. Locate the blender executable if it is not in your path. For the following commands, please replace blender with the path to your executable (or create a symbolic link or use an alias).
    • On Linux, it could be in /usr/bin/blender (already in your path).
    • On macOS, it could be in /Applications/Blender.app/Contents/MacOS/Blender (not in your path)
  3. Check that the correct version is installed:
    • blender --background --version should return "Blender 2.93.X".
    • blender --background --python-expr "import sys; print('\nThe version of python is '+sys.version.split(' ')[0])" should return "3.9.X".
  4. Locate the python installation used by blender the following line. I will refer to this path as path/to/blender/python.
blender --background --python-expr "import sys; import os; print('\nThe path to the installation of python of blender can be:'); print('\n'.join(['- '+x for x in sys.path if 'python' in (file:=os.path.split(x)[-1]) and not file.endswith('.zip')]))"
  1. Install these packages in the python environnement of blender:
path/to/blender/python -m pip install --user numpy
path/to/blender/python -m pip install --user matplotlib
path/to/blender/python -m pip install --user hydra-core --upgrade
path/to/blender/python -m pip install --user hydra_colorlog --upgrade
path/to/blender/python -m pip install --user moviepy
path/to/blender/python -m pip install --user shortuuid

Launch a python script (with arguments) with blender

Now that blender is installed, if we want to run the script script.py with the blender API (the bpy module), we can use:

blender --background --python script.py

If you need to add additional arguments, this will probably fail (as blender will interpret the arguments). Please use the double dash -- to tell blender to ignore the rest of the command. I then only parse the last part of the command (check temos/launch/blender.py if you are interested).

Rendering one sample

To render only one motion, please use this command line:

blender --background --python render.py -- npy=PATH_TO_DATA.npy [OPTIONS]

Rendering all the data

Please use this command line to render all the data of a split (which have to be already generated with sample.py). I suggest to use split=visu to render only a small subset.

blender --background --python render.py -- folder=FOLDER [OPTIONS]

SMPL bodies

Don't forget to generate the data with the option jointstype=vertices before. The renderer will automatically detect whether the movement is a sequence of joints or meshes.

Some optional parameters

  • downsample=true: Render only 1 frame every 8 frames, to speed up rendering (by default)
  • canonicalize=true: Make sure the first pose is oriented canonically (by translating and rotating the entire sequence) (by default)
  • mode=XXX: Choose the rendering mode (default is mode=sequence)
    • video: Render all the frames and generate a video (as in the supplementary video)
    • sequence: Render a single frame, with num=8 bodies (sampled equally, as in the figures of the paper)
    • frame: Render a single frame, at a specific point in time (exact_frame=0.5, generates the frame at about 50% of the video)
  • quality=false: Render to a higher resolution and denoise the output (default to false to speed up))

License

This code is distributed under an MIT LICENSE.

Note that our code depends on other libraries, including SMPL, SMPL-X, PyTorch3D, Hugging Face, Hydra, and uses datasets which each have their own respective licenses that must also be followed.

Owner
Mathis Petrovich
PhD student mainly interested in Human Body Shape Analysis, Computer Vision and Optimal Transport.
Mathis Petrovich
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022