Repository for the paper: VoiceMe: Personalized voice generation in TTS

Overview

🗣 VoiceMe: Personalized voice generation in TTS

arXiv

Abstract

Novel text-to-speech systems can generate entirely new voices that were not seen during training. However, it remains a difficult task to efficiently create personalized voices from a high dimensional speaker space. In this work, we use speaker embeddings from a state-of-the-art speaker verification model (SpeakerNet) trained on thousands of speakers to condition a TTS model. We employ a human sampling paradigm to explore this speaker latent space. We show that users can create voices that fit well to photos of faces, art portraits, and cartoons. We recruit online participants to collectively manipulate the voice of a speaking face. We show that (1) a separate group of human raters confirms that the created voices match the faces, (2) speaker gender apparent from the face is well-recovered in the voice, and (3) people are consistently moving towards the real voice prototype for the given face. Our results demonstrate that this technology can be applied in a wide number of applications including character voice development in audiobooks and games, personalized speech assistants, and individual voices for people with speech impairment.

Demos

  • 📢 Demo website
  • 🔇 Unmute to listen to the videos on Github:
Examples-for-art-works.mp4
Example-chain.mp4

Preprocessing

Setup the repository

git clone https://github.com/polvanrijn/VoiceMe.git
cd VoiceMe
main_dir=$PWD

preprocessing_env="$main_dir/preprocessing-env"
conda create --prefix $preprocessing_env python=3.7
conda activate $preprocessing_env
pip install Cython
pip install git+https://github.com/NVIDIA/[email protected]#egg=nemo_toolkit[all]
pip install requests

Create face styles

We used the same sentence ("Kids are talking by the door", neutral recording) from the RAVDESS corpus from all 24 speakers. You can download all videos by running download_RAVDESS.sh. However, the stills used in the paper are also part of the repository (stills). We can create the AI Gahaku styles by running python ai_gahaku.py and the toonified version by running python toonify.py (you need to add your API key).

Obtain the PCA space

The model used in the paper was trained on SpeakerNet embeddings, so we to extract the embeddings from a dataset. Here we use the commonvoice data. To download it, run: python preprocess_commonvoice.py --language en

To extract the principal components, run compute_pca.py.

Synthesis

Setup

We'll assume, you'll setup a remote instance for synthesis. Clone the repo and setup the virtual environment:

git clone https://github.com/polvanrijn/VoiceMe.git
cd VoiceMe
main_dir=$PWD

synthesis_env="$main_dir/synthesis-env"
conda create --prefix $synthesis_env python=3.7
conda activate $synthesis_env

##############
# Setup Wav2Lip
##############
git clone https://github.com/Rudrabha/Wav2Lip.git
cd Wav2Lip

# Install Requirements
pip install -r requirements.txt
pip install opencv-python-headless==4.1.2.30
wget "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth" -O "face_detection/detection/sfd/s3fd.pth"  --no-check-certificate

# Install as package
mv ../setup_wav2lip.py setup.py
pip install -e .
cd ..


##############
# Setup VITS
##############
git clone https://github.com/jaywalnut310/vits
cd vits

# Install Requirements
pip install -r requirements.txt

# Install monotonic_align
mv monotonic_align ../monotonic_align

# Download the VCTK checkpoint
pip install gdown
gdown https://drive.google.com/uc?id=11aHOlhnxzjpdWDpsz1vFDCzbeEfoIxru

# Install as package
mv ../setup_vits.py setup.py
pip install -e .

cd ../monotonic_align
python setup.py build_ext --inplace
cd ..


pip install flask
pip install wget

You'll need to do the last step manually (let me know if you know an automatic way). Download the checkpoint wav2lip_gan.pth from here and put it in Wav2Lip/checkpoints. Make sure you have espeak installed and it is in PATH.

Running

Start the remote service (I used port 31337)

python server.py --port 31337

You can send an example request locally, by running (don't forget to change host and port accordingly):

python request_demo.py

We also made a small 'playground' so you can see how slider values will influence the voice. Start the local flask app called client.py.

Experiment

The GSP experiment cannot be shared at this moment, as PsyNet is still under development.

Owner
Pol van Rijn
PhD student at Max Planck Institute for Empirical Aesthetics
Pol van Rijn
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm, corresponding to the paper Fully Supervised Speaker Diarization.

UIS-RNN Overview This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm. UIS-RNN solves the problem of s

Google 1.4k Dec 28, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
Repository of the Code to Chatbots, developed in Python

Description In this repository you will find the Code to my Chatbots, developed in Python. I'll explain the structure of this Repository later. Requir

Li-am K. 0 Oct 25, 2022
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022
Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2.

Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2. It is trained (finetuned) on a curated list of approximately 45K Python (~470MB) files gathered from the

Galois Autocompleter 91 Sep 23, 2022
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La

LCS2-IIITDelhi 5 Sep 13, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022