Make a surveillance camera from your raspberry pi!

Overview

rpi-surveillance

Make a surveillance camera from your Raspberry Pi 4!

The surveillance is built as following: the camera records 10 seconds video and if a motion was detected - sends the video to telegram channel.

The timestamp is printed on videos, so it is better to set the correct time on your Raspberry Pi.

The motion detection works in the following way: the camera’s H.264 encoder calculates motion vector estimates while generating compressed video. Using these vectors we threshold them by --magnitude-th argument. If more than --vectors-quorum vectors thresholded - mark current frame as containing motion. If there are more than --detection-frames consecutive frames with motion - motion detected.

Tested on Raspberry Pi 4 (4 RAM) + NoIR Camera V2.

Installation

Install package

Install Python 3 requirements:

pip3 install --user -r requirements.txt

Install provided .deb package:

sudo dpkg -i <path/to/downloaded/rpi-surveillance.deb>
sudo apt install -f

Note: the installation supposes that you already enabled camera module on your Raspberry Pi.

Create telegram bot and chat

  1. Write to @BotFather in telegram and create a bot:
/start
/newbot
<name of your bot>
<username of your bot>_bot

You will get the TOKEN. Save it for future use.

  1. Create a private channel where you will receive video sequences with motion.
  2. Add created bot to the channel (rerquires only "post messages" permission).
  3. Send message test to the channel.
  4. Run /usr/lib/rpi-surveillance/get_channel_id to get the CHANNEL_ID. Save it for future use.

Usage

To launch surveillance just run rpi-surveillance with your TOKEN and CHANNEL_ID, for example:

rpi-surveillance --token 1259140266:WAaqkMycra87ECzRZwa6Z_8T9KB4N-8OPI --channel-id -1003209177928

You can set various parameters of the surveillance:

usage: rpi-surveillance [-h] [--config CONFIG] --token TOKEN --channel-id
                        CHANNEL_ID [--temp-dir TEMP_DIR] [--log-file LOG_FILE]
                        [--resolution {640x480,1280x720,1920x1080}]
                        [--fps {25,30,60}] [--rotation {0,90,180,270}]
                        [--duration DURATION] [--magnitude-th MAGNITUDE_TH]
                        [--vectors-quorum VECTORS_QUORUM]
                        [--detection-frames DETECTION_FRAMES]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to config file.
  --token TOKEN         Token for your telegram bot.
  --channel-id CHANNEL_ID
                        Telegram channel ID. If you don't have it please, send
                        a message to your channel and run /usr/lib/rpi-
                        surveillance/get_channel_id with your token.
  --temp-dir TEMP_DIR   Path to temporary directory for video saving before
                        sending to channel. Don't change it if you don't know
                        what you're doing.
  --log-file LOG_FILE   Path to log file for logging.
  --resolution {640x480,1280x720,1920x1080}
                        Camera resolution. Default - 640x480.
  --fps {25,30,60}      Frames per second. Default - 25.
  --rotation {0,90,180,270}
                        Frame rotation. Default - 0.
  --duration DURATION   Duration of videos in seconds. Default - 10.
  --magnitude-th MAGNITUDE_TH
                        Magnitude threshold for motion detection (lower - more
                        sensitive). Defaults: for 640x480 - 15, for 1280x720 -
                        40, for 1920x1080 - 65.
  --vectors-quorum VECTORS_QUORUM
                        Vectors quorum for motion detection (lower - more
                        sensitive). Defaults: for 640x480 - 10, for 1280x720 -
                        20, for 1920x1080 - 40.
  --detection-frames DETECTION_FRAMES
                        The number of consecutive frames with detected motion
                        to send an alert.

Build

Build was done using dpkg-buildpackage.

You might also like...
Make your master artistic punk avatar through machine learning world famous paintings.
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

 Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

Releases(v2.2.2)
Owner
Vladyslav
Machine learning and computer vision developer.
Vladyslav
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022