Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Overview

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020)

Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, Amir Globerson

Main project page.

Generation of scenes with many objects. Our method achieves better performance on such scenes than previous methods. Left: A partial input scene graph. Middle: Generation using [1]. Right: Generation using our proposed method.

Our novel contributions are:

  1. We propose a model that uses canonical representations of SGs, thus obtaining stronger invariance properties. This in turn leads to generalization on semantically equivalent graphs and improved robustness to graph size and noise in comparison to existing methods.
  2. We show how to learn the canonicalization process from data.
  3. We use our canonical representations within an SG-to-image model and demonstrate our approach results in an improved generation on Visual Genome, COCO, and CLEVR, compared to the state-of-the-art baselines.

Dependencies

To get started with the framework, install the following dependencies:

Data

Follow the commands below to build the data.

COCO

./scripts/download_coco.sh

VG

./scripts/download_vg.sh

CLEVR

Please download the CLEVR-Dialog Dataset from here.

Training

Training a SG-to-Layout model:

python -m scripts.train --dataset={packed_coco, packed_vg, packed_clevr}  

Training AttSpade - Layout-to-Image model:

Optional arguments:

--output_dir=output_path_dir/%s (s is the run_name param) --run_name=folder_name --checkpoint_every=N (default=5000) --dataroot=datasets_path --debug (a flag for debug)

Train on COCO (with boxes):

python -m scripts.train --dataset=coco --batch_size=16 --loader_num_workers=0 --skip_graph_model=0 --skip_generation=0 --image_size=256,256 --min_objects=1 --max_objects=1000 --gpu_ids=0 --use_cuda

Train on VG:

python -m scripts.train --dataset=vg --batch_size=16 --loader_num_workers=0 --skip_graph_model=0 --skip_generation=0 --image_size=256,256 --min_objects=3 --max_objects=30 --gpu_ids=0 --use_cuda

Train on CLEVR:

python -m scripts.train --dataset=packed_clevr --batch_size=6 --loader_num_workers=0 --skip_graph_model=0 --skip_generation=0 --image_size=256,256 --use_img_disc=1 --gpu_ids=0 --use_cuda

Inference

Inference SG-to-Layout

To produce layout outputs and IOU results, run:

python -m scripts.layout_generation --checkpoint=<trained_model_folder> --gpu_ids=<0/1/2>

A new folder with the results will be created in: <trained_model_folder>

Pre-trained Models:

Packed COCO: link

Packed Visual Genome: link

Inference Layout-to-Image (LostGANs)

Please use LostGANs implementation

Inference Layout-to-Image (from dataframe)

To produce the image from a dataframe, run:

python -m scripts.generation_dataframe --checkpoint=<trained_model_folder>

A new folder with the results will be created in: <trained_model_folder>

Inference Layout-to-Image (AttSPADE)

COCO/ Visual Genome

  1. Generate images from a layout (dataframe):
python -m scripts.generation_dataframe --gpu_ids=<0/1/2> --checkpoint=<model_path> --output_dir=<output_path> --data_frame=<dataframe_path> --mode=<gt/pred>

mode=gt defines use gt_boxes while mode=pred use predicted box by our WSGC model from the paper (see the dataframe for more details).

Pre-trained Models:
COCO

dataframe: link; 128x128 resolution: link; 256x256 resolution: link

Visual Genome

dataframe: link; 128x128 resolution: link; 256x256 resolution: link

  1. Generate images from a scene graph:
python -m scripts.generation_attspade --gpu_ids=<0/1/2> --checkpoint=<model/path> --output_dir=<output_path>

CLEVR

This script generates CLEVR images on large scene graphs from scene_graphs.pkl. It generates the CLEVR results for both WSGC + AttSPADE and Sg2Im + AttSPADE. For more information, please refer to the paper.

python -m scripts.generate_clevr --gpu_ids=<0/1/2> --layout_not_learned_checkpoint=<model_path> --layout_learned_checkpoint=<model_path> --output_dir=<output_path>
Pre-trained Models:

Baseline (Sg2Im): link; WSGC: link

Acknowledgment

References

[1] Justin Johnson, Agrim Gupta, Li Fei-Fei, Image Generation from Scene Graphs, 2018.

Citation

@inproceedings{herzig2019canonical,
 author    = {Herzig, Roei and Bar, Amir and Xu, Huijuan and Chechik, Gal and Darrell, Trevor and Globerson, Amir},
 title     = {Learning Canonical Representations for Scene Graph to Image Generation},
 booktitle = {Proc. of the European Conf. on Computer Vision (ECCV)},
 year      = {2020}
}
Owner
roei_herzig
CS PhD student at Tel Aviv University. Algorithm Researcher, R&D at Nexar & Trax. Studied MSc (CS), BSc (CS) and BSc (Physics) at TAU.
roei_herzig
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022