Python Library for Signal/Image Data Analysis with Transport Methods

Overview

PyTransKit

Python Transport Based Signal Processing Toolkit

Website and documentation: https://pytranskit.readthedocs.io/

Installation

The library could be installed through pip

pip install pytranskit

Alternately, you could clone/download the repository and add the pytranskit directory to your Python path

import sys
sys.path.append('path/to/pytranskit')

from pytranskit.optrans.continuous.cdt import CDT

Low Level Functions

CDT, SCDT

R-CDT

CLOT

  • Continuous Linear Optimal Transport Transform (CLOT) tutorial [notebook] [nbviewer]

Classification Examples

  • CDT Nearest Subspace (CDT-NS) classifier for 1D data [notebook] [nbviewer]
  • SCDT Nearest Subspace (SCDT-NS) classifier for 1D data [8] [notebook] [nbviewer]
  • Radon-CDT Nearest Subspace (RCDT-NS) classifier for 2D data [4] [notebook] [nbviewer]
  • 3D Radon-CDT Nearest Subspace (3D-RCDT-NS) classifier for 3D data [notebook] [nbviewer]

Estimation Examples

Transport-based Morphometry

  • Transport-based Morphometry to detect and visualize cell phenotype differences [7] [notebook] [nbviewer]

References

  1. The cumulative distribution transform and linear pattern classification, Applied and Computational Harmonic Analysis, November 2018
  2. The Radon Cumulative Distribution Transform and Its Application to Image Classification, IEEE Transactions on Image Processing, December 2015
  3. A continuous linear optimal transport approach for pattern analysis in image datasets, Pattern Recognition, March 2016
  4. Radon cumulative distribution transform subspace modeling for image classification, Journal of Mathematical Imaging and Vision, 2021
  5. Parametric Signal Estimation Using the Cumulative Distribution Transform, IEEE Transactions on Signal Processing, May 2020
  6. The Signed Cumulative Distribution Transform for 1-D Signal Analysis and Classification, ArXiv 2021
  7. Detecting and visualizing cell phenotype differences from microscopy images using transport-based morphometry, PNAS 2014
  8. Nearest Subspace Search in the Signed Cumulative Distribution Transform Space for 1D Signal Classification, ArXiv 2021

Resources

External website http://imagedatascience.com/transport/

You might also like...
 Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

Comments
  • Problem installing `bluepy` from the repo.

    Problem installing `bluepy` from the repo.

    Problem: for my machine (machine spec mentioned below), installing requirements on this repo, as given in requirements.txt throws the following error.

    error: legacy-install-failure
    
    × Encountered error while trying to install package.
    ╰─> bluepy
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for output from the failure.
    

    This error is in context with mention of bluepy in requirements.txt.

    Machine Specs:

    1. miniconda venv for python 3.9.12 running on MacOS Monterey; CPU: Apple M2.
    2. miniconda venv for python 3.10.4 running on Ubuntu Jammy Jellyfish; CPU: AMD Ryzen.

    Interesting Note: I don't find bluepy being directly imported in the code on the master or the CDT-app-gui branch.

    Proposed Solution:

    1. Remove bluepy from requirements.txt

    Note: This is not a problem with installing PyTranskit itself. It installs pretty gracefully through pip.

    opened by Ujjawal-K-Panchal 1
  • Changed filter to filter_name

    Changed filter to filter_name

    In the radoncdt.py file passing the option filter was not working since scikit-image expects the key filter_name.

    Tutorial 2 was failing for this reason.

    opened by giovastabile 0
  • Create a

    Create a "NS" classifier

    Create a "NS" classifier, as an standalone implementation of the nearest subspace classification method. The "RCDT_NS" and "CDT-NS" classifier can be a subclass of this classifier.

    opened by xuwangyin 0
  • Issue when setting forward('rm_edge = True')

    Issue when setting forward('rm_edge = True')

    This possibly just needs an edit to reduce the size of the reference signal array alongside the reduction in size of the signal with removed edges.

    File "\RCDT_Basic_Tests.py", line 115, in <module>
        Irev = rcdt.inverse(Ihat, temp, nlims)
    
      File "\pytranskit\optrans\continuous\radoncdt.py", line 123, in inverse
        return self.apply_inverse_map(transport_map, sig0, x1_range)
    
      File "\pytranskit\optrans\continuous\radoncdt.py", line 235, in apply_inverse_map
        sig1_recon = match_shape2d(sig0, sig1_recon)
    
      File "\pytranskit\optrans\utils\data_utils.py", line 81, in match_shape2d
        raise ValueError("A is bigger than B: "
    
    ValueError: A is bigger than B: (250, 250) vs (248, 248)
    
    opened by TobiasLong 0
Releases(0.1)
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023