TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

Overview

FunMatch-Distillation

TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

The techniques have been demonstrated using three datasets:

This repository provides Kaggle Kernel notebooks so that we can leverage the free TPu v3-8 to run the long training schedules. Please refer to this section.

Importance

The importance of knowledge distillation lies in its practical usefulness. With the recipes from "function matching", we can now perform knowledge distillation using a principled approach yielding student models that can actually match the performance of their teacher models. This essentially allows us to compress bigger models into (much) smaller ones thereby reducing storage costs and improving inference speed.

Key ingredients

  • No use of ground-truth labels during distillation.
  • Teacher and student should see same images during distillation as opposed to differently augmented views of same images.
  • Aggressive form of MixUp as the key augmentation recipe. MixUp is paired with "Inception-style" cropping (implemented in this script).
  • A LONG training schedule for distillation. At least 1000 epochs to get good results without overfitting. The importance of a long training schedule is paramount as studied in the paper.

Results

The table below summarizes the results of my experiments. In all cases, teacher is a BiT-ResNet101x3 model and student is a BiT-ResNet50x1. For fun, you can also try to distill into other model families. BiT stands for "Big Transfer" and it was proposed in this paper.

Dataset Teacher/Student Top-1 Acc on Test Location
Flowers102 Teacher 98.18% Link
Flowers102 Student (1000 epochs) 81.02% Link
Pet37 Teacher 90.92% Link
Pet37 Student (300 epochs) 81.3% Link
Pet37 Student (1000 epochs) 86% Link
Food101 Teacher 85.52% Link
Food101 Student (100 epochs) 76.06% Link

(Location denotes the trained model location.)

These results are consistent with Table 4 of the original paper.

It should be noted that none of the above student training regimes showed signs of overfitting. Further improvements can be done by training for longer. The authors also showed that Shampoo can get to similar performance much quicker than Adam during distillation. So, it may very well be possible to get this performance with fewer epochs with Shampoo.

A few differences from the original implementation:

  • The authors use BiT-ResNet152x2 as a teacher.
  • The mixup() variant I used will produce a pair of duplicate images if the number of images is even. Now, for 8 workers it will become 8 pairs. This may have led to the reduced performance. We can overcome this by using tf.roll(images, 1, axis=0) instead of tf.reverse in the mixup() function. Thanks to Lucas Beyer for pointing this out.

About the notebooks

All the notebooks are fully runnable on Kaggle Kernel. The only requirement is that you'd need a billing enabled GCP account to use GCS Buckets to store data.

Notebook Description Kaggle Kernel
train_bit.ipynb Shows how to train the teacher model. Link
train_bit_keras_tuner.ipynb Shows how to run hyperparameter tuning using
Keras Tuner for the teacher model.
Link
funmatch_distillation.ipynb Shows an implementation of the recipes
from "function matching".
Link

These are only demonstrated on the Pet37 dataset but will work out-of-the-box for the other datasets too.

TFRecords

For convenience, TFRecords of different datasets are provided:

Dataset TFRecords
Flowers102 Link
Pet37 Link
Food101 Link

Paper citation

@misc{beyer2021knowledge,
      title={Knowledge distillation: A good teacher is patient and consistent}, 
      author={Lucas Beyer and Xiaohua Zhai and Amélie Royer and Larisa Markeeva and Rohan Anil and Alexander Kolesnikov},
      year={2021},
      eprint={2106.05237},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

Huge thanks to Lucas Beyer (first author of the paper) for providing suggestions on the initial version of the implementation.

Thanks to the ML-GDE program for providing GCP credits.

Thanks to TRC for providing Cloud TPU access.

You might also like...
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

Code implementation of Data Efficient Stagewise Knowledge Distillation paper.
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Official implementation of the paper
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Releases(v4.0.0)
Owner
Sayak Paul
Trying to learn how machines learn.
Sayak Paul
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022