Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Overview

Pytorch 1.10.0 code for:

Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx)

Citation:

@article{negevsbelharbi2021,
  title={Negative Evidence Matters  in Interpretable Histology Image Classification},
  author={Belharbi, S. and  Pedersoli, M and
  Ben Ayed, I. and McCaffrey, L. and Granger, E.},
  journal={CoRR},
  volume={abs/xxxx.xxxxx},
  year={2021}
}

Issues:

Please create a github issue.

Content:

Method:

method

Results:

glas-results

camelyon16-results

Requirements:

pip install torch==1.10.0 -f https://download.pytorch.org/whl/cu111/torch-1.10.0%2Bcu111-cp37-cp37m-linux_x86_64.whl
pip install torchvision==0.11.1 -f https://download.pytorch.org/whl/cu111/torchvision-0.11.1%2Bcu111-cp37-cp37m-linux_x86_64.whl
  • Full dependencies
  • Build and install CRF:
    • Install Swig
    • CRF (not used in this work, but it is part of the code.)
cdir=$(pwd)
cd dlib/crf/crfwrapper/bilateralfilter
swig -python -c++ bilateralfilter.i
python setup.py install
cd $cdir
cd dlib/crf/crfwrapper/colorbilateralfilter
swig -python -c++ colorbilateralfilter.i
python setup.py install

Download datasets :

2.1. Links to dataset:

2.2. Download datasets:

You find the splits in ./folds.

Run code :

  • CAM-method: CAM over GLAS using ResNet50:
cudaid=$1
export CUDA_VISIBLE_DEVICES=$cudaid
getfreeport() {
freeport=$(python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]); s.close()')
}
export OMP_NUM_THREADS=50
export NCCL_BLOCKING_WAIT=1
plaunch=$(python -c "from os import path; import torch; print(path.join(path.dirname(torch.__file__), 'distributed', 'launch.py'))")
getfreeport
torchrun --nnodes=1 --node_rank=0 --nproc_per_node=1  \
                         --master_port=$freeport main_wsol.py \ --local_world_size=1 \
                         --task STD_CL \
                         --encoder_name resnet50 \
                         --arch STDClassifier \
                         --runmode final-mode \
                         --opt__name_optimizer sgd \
                         --batch_size 32 \
                         --eval_checkpoint_type best_localization \
                         --opt__step_size 250 \
                         --opt__gamma 0.1 \
                         --max_epochs 1000 \
                         --freeze_cl False \
                         --support_background True \
                         --method CAM \
                         --spatial_pooling WGAP \
                         --dataset GLAS \
                         --fold 0 \
                         --cudaid 0 \
                         --debug_subfolder None \
                         --amp True \
                         --opt__lr 0.003 \
                         --exp_id 11_19_2021_09_32_36_109051__423849
  • NEGEV-method: over GLAS using ResNet50:
cudaid=$1
export CUDA_VISIBLE_DEVICES=$cudaid
getfreeport() {
freeport=$(python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]); s.close()')
}
export OMP_NUM_THREADS=50
export NCCL_BLOCKING_WAIT=1
plaunch=$(python -c "from os import path; import torch; print(path.join(path.dirname(torch.__file__), 'distributed', 'launch.py'))")
getfreeport
torchrun --nnodes=1 --node_rank=0 --nproc_per_node=1 \
                         --master_port=$freeport main_wsol.py \ --local_world_size=1 \
                         --task NEGEV \
                         --world_size 1 \
                         --task NEGEV \
                         --encoder_name resnet50 \
                         --arch UnetNEGEV \
                         --runmode final-mode \
                         --opt__name_optimizer sgd \
                         --dist_backend mpi \
                         --batch_size 32 \
                         --eval_checkpoint_type best_localization \
                         --opt__step_size 250 \
                         --opt__gamma 0.1 \
                         --max_epochs 1000 \
                         --freeze_cl True \
                         --support_background True \
                         --method CAM \
                         --spatial_pooling WGAP \
                         --dataset GLAS \
                         --fold 0 \
                         --cudaid 0 \
                         --debug_subfolder None \
                         --amp True \
                         --opt__lr 0.1 \
                         --negev_ptretrained_cl_cp best_localization \
                         --elb_init_t 1.0 \
                         --elb_max_t 10.0 \
                         --elb_mulcoef 1.01 \
                         --sl_ng True \
                         --sl_ng_seeder probability_seeder \
                         --sl_ng_lambda 1.0 \
                         --sl_ng_start_ep 0 \
                         --sl_ng_end_ep -1 \
                         --sl_ng_min 1 \
                         --sl_ng_max 1 \
                         --sl_ng_ksz 3 \
                         --crf_ng False \
                         --jcrf_ng False \
                         --neg_samples_ng False \
                         --max_sizepos_ng False \
                         --exp_id 12_13_2021_00_49_48_796469__3314599
  • Train the CAM-method first. Then, copy the best model from the exp folder into the folder ./pretrained. Copy the whole folder with this name format GLAS-0-resnet50-CAM-WGAP-cp_best_localization.
Owner
Soufiane Belharbi
Post-doc at LIVIA Lab. ÉTS Montreal, in collab. with McCaffrey Lab. /GCRC McGill. Training neural networks with weak supervision.
Soufiane Belharbi
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022