Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Overview

Stratified Transformer for 3D Point Cloud Segmentation

Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

This is the official PyTorch implementation of our paper Stratified Transformer for 3D Point Cloud Segmentation that has been accepted to CVPR 2022. [arXiv]

Highlight

  1. Our method (Stratified Transformer) achieves the state-of-the-art performance on 3D point cloud semantic segmentation on both S3DIS and ScanNetv2 datasets. It is the first time for a point-based method to outperform the voxel-based ones, such as SparseConvNet and MinkowskiNet;
  2. Stratified Transformer is point-based, and constructed by Transformer with standard multi-head self-attention, enjoying large receptive field, robust generalization ability as well as competitive performance;
  3. This repository develops a memory-efficient implementation to combat the issue of variant-length tokens with several CUDA kernels, avoiding unnecessary momery occupation of vacant tokens. We also use shared memory for further acceleration.

Get Started

Environment

Install dependencies (we recommend using conda and pytorch>=1.8.0 for quick installation, but 1.6.0+ should work with this repo)

# install torch_points3d

# If you use conda and pytorch>=1.8.0, (this enables quick installation)
conda install pytorch-cluster -c pyg
conda install pytorch-sparse -c pyg
conda install pyg -c pyg
pip install torch_points3d

# Otherwise,
pip install torch_points3d

Install other dependencies

pip install tensorboard timm termcolor tensorboardX

If you meet issues with the above commands, you can also directly install the environment via pip install -r requirements.txt.

Make sure you have installed gcc and cuda, and nvcc can work (Note that if you install cuda by conda, it won't provide nvcc and you should install cuda manually.). Then, compile and install pointops2 as follows. (We have tested on gcc==7.5.0 and cuda==10.1)

cd lib/pointops2
python3 setup.py install

Datasets Preparation

S3DIS

Please refer to https://github.com/yanx27/Pointnet_Pointnet2_pytorch for S3DIS preprocessing. Then modify the data_root entry in the .yaml configuration file.

ScanNetv2

Please refer to https://github.com/dvlab-research/PointGroup for the ScanNetv2 preprocessing. Then change the data_root entry in the .yaml configuration file accordingly.

Training

S3DIS

  • Stratified Transformer
python3 train.py --config config/s3dis/s3dis_stratified_transformer.yaml
  • 3DSwin Transformer (The vanilla version shown in our paper)
python3 train.py --config config/s3dis/s3dis_swin3d_transformer.yaml

ScanNetv2

  • Stratified Transformer
python3 train.py --config config/scannetv2/scannetv2_stratified_transformer.yaml
  • 3DSwin Transformer (The vanilla version shown in our paper)
python3 train.py --config config/scannetv2/scannetv2_swin3d_transformer.yaml

Note: It is normal to see the the results on S3DIS fluctuate between -0.5% and +0.5% mIoU maybe because the size of S3DIS is relatively small, while the results on ScanNetv2 are relatively stable.

Testing

For testing, first change the model_path, save_folder and data_root_val (if applicable) accordingly. Then, run the following command.

python3 test.py --config [YOUR_CONFIG_PATH]

Pre-trained Models

For your convenience, you can download the pre-trained models and training/testing logs from Here.

Citation

If you find this project useful, please consider citing:

@inproceedings{lai2022stratified,
  title     = {Stratified Transformer for 3D Point Cloud Segmentation},
  author    = {Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia},
  booktitle = {CVPR},
  year      = {2022}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022