Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Overview

EAN: Event Adaptive Network

PWC

PyTorch Implementation of paper:

EAN: Event Adaptive Network for Enhanced Action Recognition

Yuan Tian, Yichao Yan, Xiongkuo Min, Guo Lu, Guangtao Zhai, Guodong Guo, and Zhiyong Gao

[ArXiv]

Main Contribution

Efficiently modeling spatial-temporal information in videos is crucial for action recognition. In this paper, we propose a unified action recognition framework to investigate the dynamic nature of video content by introducing the following designs. First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events. Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer, which yields a sparse paradigm. We call the proposed framework as Event Adaptive Network (EAN) because both key designs are adaptive to the input video content. To exploit the short-term motions within local segments, we propose a novel and efficient Latent Motion Code (LMC) module, further improving the performance of the framework.

Content

Dependencies

Please make sure the following libraries are installed successfully:

Data Preparation

Following the common practice, we need to first extract videos into frames for fast data loading. Please refer to TSN repo for the detailed guide of data pre-processing. We have successfully trained on Something-Something-V1 and V2, Kinetics, Diving48 datasets with this codebase. Basically, the processing of video data can be summarized into 3 steps:

  1. Extract frames from videos:

  2. Generate file lists needed for dataloader:

    • Each line of the list file will contain a tuple of (extracted video frame folder name, video frame number, and video groundtruth class). A list file looks like this:

      video_frame_folder 100 10
      video_2_frame_folder 150 31
      ...
      
    • Or you can use off-the-shelf tools provided by the repos: data_process/gen_label_xxx.py

  3. Edit dataset config information in datasets_video.py

Pretrained Models

Here, we provide the pretrained models of EAN models on Something-Something-V1 datasets. Recognizing actions in this dataset requires strong temporal modeling ability. EAN achieves state-of-the-art performance on these datasets. Notably, our method even surpasses optical flow based methods while with only RGB frames as input.

Something-Something-V1

Model Backbone FLOPs Val Top1 Val Top5 Checkpoints
EAN8F(RGB+LMC) ResNet-50 37G 53.4 81.1 [Jianguo Cloud]
EAN16(RGB+LMC) 74G 54.7 82.3
EAN16+8(RGB+LMC) 111G 57.2 83.9
EAN2 x (16+8)(RGB+LMC) 222G 57.5 84.3

Testing

For example, to test the EAN models on Something-Something-V1, you can first put the downloaded .pth.tar files into the "pretrained" folder and then run:

# test EAN model with 8frames clip
bash scripts/test/sthv1/RGB_LMC_8F.sh

# test EAN model with 16frames clip
bash scripts/test/sthv1/RGB_LMC_16F.sh

Training

We provided several scripts to train EAN with this repo, please refer to "scripts" folder for more details. For example, to train PAN on Something-Something-V1, you can run:

# train EAN model with 8frames clip
bash scripts/train/sthv1/RGB_LMC_8F.sh

Notice that you should scale up the learning rate with batch size. For example, if you use a batch size of 32 you should set learning rate to 0.005.

Other Info

References

This repository is built upon the following baseline implementations for the action recognition task.

Citation

Please [★star] this repo and [cite] the following arXiv paper if you feel our EAN useful to your research:

@misc{tian2021ean,
      title={EAN: Event Adaptive Network for Enhanced Action Recognition}, 
      author={Yuan Tian and Yichao Yan and Xiongkuo Min and Guo Lu and Guangtao Zhai and Guodong Guo and Zhiyong Gao},
      year={2021},
      eprint={2107.10771},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

For any questions, please feel free to open an issue or contact:

Yuan Tian: [email protected]
Owner
TianYuan
TianYuan
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022