Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Overview

Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy, CVPR'21.

Usage

This project uses Python >= 3.7.3. After setting up your virtual environment, please install the required python libraries through:

pip install -r requirements.txt

Code is formatted with Black (PEP8) using a pre-commit hook. To configure it, run:

pre-commit install

Data format

Similarly to researchers from Monash University, this project processes events through the HDF5 data format. Details about the structure of these files can be found in datasets/tools/.

Inference

Download our pre-trained models from here.

Our HDF5 version of sequences from the Event Camera Dataset can also be downloaded from here for evaluation purposes.

To estimate optical flow from the input events:

python eval_flow.py 
   

   

 

To perform image reconstruction from the input events:

python eval_reconstruction.py 
   

   

 

In configs/, you can find the configuration files associated to these scripts and vary the inference settings (e.g., number of input events, dataset).

Training

Our framework can be trained using any event camera dataset. However, if you are interested in using our training data, you can download it from here. The datasets are expected at datasets/data/, but this location can be modified in the configuration files.

To train an image reconstruction and optical flow model, you need to adapt the training settings in configs/train_reconstruction.yml. Here, you can choose the training dataset, the number of input events, the neural networks to be used (EV-FlowNet or FireFlowNet for optical flow; E2VID or FireNet for image reconstruction), the number of epochs, the optimizer and learning rate, etc. To start the training from scratch, run:

python train_reconstruction.py

Alternatively, if you have a model that you would like to keep training from, you can use

python train_reconstruction.py --prev_model 
   

   

This is handy if, for instance, you just want to train the image reconstruction model and use a pre-trained optical flow network. For this, you can set train_flow: False in configs/train_reconstruction.yml, and run:

python train_reconstruction.py --prev_model 
   

   

If you just want to train an optical flow network, adapt configs/train_flow.yml, and run:

python train_flow.py

Note that we use MLflow to keep track of all the experiments.

Citations

If you use this library in an academic context, please cite the following:

@article{paredes2020back,
  title={Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy},
  author={Paredes-Vall{\'e}s, Federico and de Croon, Guido C. H. E.},
  journal={arXiv preprint arXiv:2009.08283},
  year={2020}
}

Acknowledgements

This code borrows from the following open source projects, whom we would like to thank:

Owner
TU Delft
TU Delft - MAVLab
TU Delft
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
Woosung Choi 63 Nov 14, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023