Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Overview

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons

This repository contains the code to reproduce the results of the NeurIPS 2021 submission "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons" (also available on arXiv).

Requirements

To install requirements:

pip install -r requirements.txt

Training & Evaluation

Code for FC MNIST experiments (Fig.2b and 4ac)

The code can be found in fig2b_fig4ac_mnist/src/.

Running the experiments: For example, in order to run all the experiments needed to reproduce Fig. 2b, execute:

cd fig2b_fig4ac_mnist/src/
/bin/bash 2b_jobs.sh

The results of each run, that is for example metrics, output and configurations, will be saved in fig2b_fig4ac_mnist/runs/{run_number}/.

For the experiment in Fig.4 replace 2b_jobs.sh with 4a_jobs.sh or 4c_jobs.sh respectively

The seeds chosen for these experiments were 42 69 12345 98765 38274 28374 42848 48393 83475 57381.

Code for HIGGS, MNIST and CIFAR10 with and without LE (Fig. 2cde).

The code can be found in fig2cde_higgs_mnist_cifar10.

The code configuration is integrated into the main files and only a few parameters are configured via argparse.

To run the code, check the respective submit_python_*_v100.sh file which contains examples and all run configurations for all seeds used.

The seeds chosen for these experiments were 1, 2, 3, 5, 7, 8, 13, 21, 34. (Fibonacci + lucky number 7), resulting in 9 seeds for each experiment.

Results can be found in the respective log file produced from the std out of the running code via python -u *_training.py > file.log.

Code for Dendritic Microcircuits with and without LE (Fig.3 and 5)

The code can be found in fig3fig5_dendritic_microcircuits/src/.

The experiments are configured using config files. All config files required for the production of the plotted results are in fig3fig5_dendritic_microcircuits/experiment_configs/. The naming scheme of the config files is as follows {task name}_{with LE or not}_tpres_{tpres in unit dt}.yaml where task name is bars (Fig.3) or mimic (Fig.5) and with LE or not is either le or orig.

For each run the results will be saved in fig3fig5_dendritic_microcircuits/experiment_results/{config file name}_{timestamp}/.

To run an experiment:

cd fig3fig5_dendritic_microcircuits/src/
python3 run_bars.py train ../experiment_configs/{chosen_config_file}

For the experiment in Fig.5 replace run_bars.py with run_single_mc.py

To plot the results of a run:

cd fig3fig5_dendritic_microcircuits/src/
python3 run_bars.py eval ../experiment_results/{results_dir_of_run_to_be_evaluated}

This will generate plots of the results (depending on how many variables you configured to be recorded, more or less plots can be generated) and save them in the respective results directory. Which plots are plotted is defined in run_X.py

Reproduce all data needed for Fig3:

For the results shown in Fig.3 all config files with the name bars_*.yaml need to be run for 10 different seeds (configurable in the config file). The seeds chosen for these experiments were 12345, 12346, 12347, 12348, 12349, 12350, 12351, 12352, 12353, 12354.

Contributing

📋 TODO: Pick a licence and describe how to contribute to your code repository.

Owner
Computational Neuroscience, University of Bern
Computational Neuroscience, University of Bern
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Xi Dongbo 78 Nov 29, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022