Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

Overview

RHM: Robot Hacking Manual

Download in PDF RHM v0.4Read online

The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robots, with an attempt to provide comprehensive case studies and step-by-step tutorials with the intent to raise awareness in the field and highlight the importance of taking a security-first1 approach. The material available here is also a personal learning attempt and it's disconnected from any particular organization. Content is provided as is and by no means I encourage or promote the unauthorized tampering of robotic systems or related technologies.

Footnotes

  1. Read on what a security-first approach in here.

You might also like...
ICCV2021 - A New Journey from SDRTV to HDRTV.
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

Control-Raspberry-Pi-Robot-using-Hand-Gestures - A 4WD Robot car based on Raspberry Pi that controlled by hand gestures(using openCV and mediapipe) Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

Pytorch code for ICRA'21 paper:
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

YARR is Yet Another Robotics and Reinforcement learning framework for PyTorch.
YARR is Yet Another Robotics and Reinforcement learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Robotics with GPU computing
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Comments
  • Aztarna path for Dockerfile COPY

    Aztarna path for Dockerfile COPY

    Hi vmayoral, thanks for putting this together.

    It may be helpful to instruct in the readme that users clone/copy the aztarna package to the Dockerfile build directory (basic_robot_cybersecurity/robot_footprinting/tutorial1) for tutorial 1 so that it can be copied via the relative path (COPY ./aztarna /root/aztarna) in the Dockerfile.

    opened by mitchallain 2
Releases(0.5)
  • 0.5(Aug 3, 2022)

    Robot Hacking Manual (RHM v0.5). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

    The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robots, with an attempt to provide comprehensive case studies and step-by-step tutorials with the intent to raise awareness in the field and highlight the importance of taking a security-first approach. The material available here is also a personal learning attempt and it's disconnected from any particular organization. Content is provided as is and by no means I encourage or promote the unauthorized tampering of robotic systems or related technologies.

    Changes:

    • Added robot hacks table
    • Reviewed case studies
    • Various minor improvements
    • Updated list of recommended talks
    Source code(tar.gz)
    Source code(zip)
    RHM.pdf(6.22 MB)
  • 0.4(Dec 12, 2021)

    Robot Hacking Manual (RHM v0.4). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

    The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robots, with an attempt to provide comprehensive case studies and step-by-step tutorials with the intent to raise awareness in the field and highlight the importance of taking a security-first approach. The material available here is also a personal learning attempt and it's disconnected from any particular organization. Content is provided as is and by no means I encourage or promote the unauthorized tampering of robotic systems or related technologies.

    Changes:

    • Added recap of talks and videos on robot cybersecurity
    • Added a new case study with open source ROS (1) PoCs
    • Improvements
    Source code(tar.gz)
    Source code(zip)
    RHM.pdf(6.13 MB)
  • 0.3(Nov 21, 2021)

    Robot Hacking Manual (RHM v0.3). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

    The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robots, with an attempt to provide comprehensive case studies and step-by-step tutorials with the intent to raise awareness in the field and highlight the importance of taking a security-first approach. The material available here is also a personal learning attempt and it's disconnected from any particular organization. Content is provided as is and by no means I encourage or promote the unauthorized tampering of robotic systems or related technologies.

    Source code(tar.gz)
    Source code(zip)
    RHM.pdf(9.05 MB)
Owner
Víctor Mayoral Vilches
Roboticist. AI and security enthusiast.
Víctor Mayoral Vilches
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022