The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

Overview

PlantStereo

This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Paper

PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction[preprint]

Qingyu Wang, Baojian Ma, Wei Liu, Mingzhao Lou, Mingchuan Zhou*, Huanyu Jiang and Yibin Ying

College of Biosystems Engineering and Food Science, Zhejiang University.

Example and Overview

We give an example of our dataset, including spinach, tomato, pepper and pumpkin.

The data size and the resolution of the images are listed as follows:

Subset Train Validation Test All Resolution
Spinach 160 40 100 300 1046×606
Tomato 80 20 50 150 1040×603
Pepper 150 30 32 212 1024×571
Pumpkin 80 20 50 150 1024×571
All 470 110 232 812

Analysis

We evaluated the disparity distribution of different stereo matching datasets.

Format

The data was organized as the following format, where the sub-pixel level disparity images are saved as .tiff format, and the pixel level disparity images are saved as .png format.

PlantStereo

├── PlantStereo2021

│          ├── tomato

│          │          ├── training

│          │          │         ├── left_view

│          │          │          │         ├── 000000.png

│          │          │          │         ├── 000001.png

│          │          │          │         ├── ......

│          │          │          ├── right_view

│          │          │          │         ├── ......

│          │          │          ├── disp

│          │          │          │         ├── ......

│          │          │          ├── disp_high_acc

│          │          │          │         ├── 000000.tiff

│          │          │          │         ├── ......

│          │          ├── testing

│          │          │          ├── left_view

│          │          │          ├── right_view

│          │          │          ├── disp

│          │          │          ├── disp_high_acc

│          ├── spinach

│          ├── ......

Download

You can use the following links to download out PlantStereo dataset.

Baidu Netdisk link
Google Drive link

Usage

  • sample.py

To construct the dataset, you can run the code in sample.py in your terminal:

conda activate <your_anaconda_virtual_environment>
python sample.py --num 0

We can registrate the image and transformate the coordinate through function mech_zed_alignment():

def mech_zed_alignment(depth, mech_height, mech_width, zed_height, zed_width):
    ground_truth = np.zeros(shape=(zed_height, zed_width), dtype=float)
    for v in range(0, mech_height):
        for u in range(0, mech_width):
            i_mech = np.array([[u], [v], [1]], dtype=float)  # 3*1
            p_i_mech = np.dot(np.linalg.inv(K_MECH), i_mech * depth[v, u])  # 3*1
            p_i_zed = np.dot(R_MECH_ZED, p_i_mech) + T_MECH_ZED  # 3*1
            i_zed = np.dot(K_ZED_LEFT, p_i_zed) * (1 / p_i_zed[2])  # 3*1
            disparity = ZED_BASELINE * ZED_FOCAL_LENGTH * 1000 / p_i_zed[2]
            u_zed = i_zed[0]
            v_zed = i_zed[1]
            coor_u_zed = round(u_zed[0])
            coor_v_zed = round(v_zed[0])
            if coor_u_zed < zed_width and coor_v_zed < zed_height:
                ground_truth[coor_v_zed][coor_u_zed] = disparity
    return ground_truth
  • epipole_rectification.py

    After collecting the left, right and disparity images throuth sample.py, we can perform epipole rectification on left and right images through epipole_rectification.py:

    python epipole_rectification.py

Citation

If you use our PlantStereo dataset in your research, please cite this publication:

@misc{PlantStereo,
    title={PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction},
    author={Qingyu Wang, Baojian Ma, Wei Liu, Mingzhao Lou, Mingchuan Zhou, Huanyu Jiang and Yibin Ying},
    howpublished = {\url{https://github.com/wangqingyu985/PlantStereo}},
    year={2021}
}

Acknowledgements

This project is mainly based on:

zed-python-api

mecheye_python_interface

Contact

If you have any questions, please do not hesitate to contact us through E-mail or issue, we will reply as soon as possible.

[email protected] or [email protected]

Owner
Wang Qingyu
A second-year Ph.D. student in Zhejiang University
Wang Qingyu
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022