Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Related tags

Deep Learningifcc
Overview

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

The reference code of Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation.

Implemented Models

Supported Radiology Report Datasets

Radiology NLI Dataset

The Radiology NLI dataset (RadNLI) is available at a corresponding PhysioNet project.

Prerequisites

  • A Linux OS (tested on Ubuntu 16.04)
  • Memory over 24GB
  • A gpu with memory over 12GB (tested on NVIDIA Titan X and NVIDIA Titan XP)

Preprocesses

Python Setup

Create a conda environment

$ conda env create -f environment.yml

NOTE : environment.yml is set up for CUDA 10.1 and cuDNN 7.6.3. This may need to be changed depending on a runtime environment.

Resize MIMIC-CXR-JPG

  1. Download MIMIC-CXR-JPG
  2. Make a resized copy of MIMIC-CXR-JPG using resize_mimic-cxr-jpg.py (MIMIC_CXR_ROOT is a dataset directory containing mimic-cxr)
    • $ python resize_mimic-cxr-jpg.py MIMIC_CXR_ROOT
  3. Create the sections file of MIMIC-CXR (mimic_cxr_sectioned.csv.gz) with create_sections_file.py
  4. Move mimic_cxr_sectioned.csv.gz to MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/

Compute Document Frequencies

Pre-calculate document frequencies that will be used in CIDEr by:

$ python cider-df.py MIMIC_CXR_ROOT mimic-cxr_train-df.bin.gz

Recognize Named Entities

Pre-recognize named entities in MIMIC-CXR by:

$ python ner_reports.py --stanza-download MIMIC_CXR_ROOT mimic-cxr_ner.txt.gz

Download Pre-trained Weights

Download pre-trained CheXpert weights, pre-trained radiology NLI weights, and GloVe embeddings

$ cd resources
$ ./download.sh

Training a Report Generation Model

First, train the Meshed-Memory Transformer model with an NLL loss.

# NLL
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --entity-match mimic-cxr_ner.txt.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --corpus mimic-cxr --lr-scheduler trans MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll

Second, further train the model a joint loss using the self-critical RL to achieve a better performance.

# RL with NLL + BERTScore + EntityMatchExact
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --rl-epoch 1 --rl-metrics BERTScore,EntityMatchExact --rl-weights 0.01,0.495,0.495 --entity-match mimic-cxr_ner.txt.gz --baseline-model out_m2trans_nll/model_31-152173.dict.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --lr 5e-6 --lr-step 32 MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll-bs-emexact
# RL with NLL + BERTScore + EntityMatchNLI
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --rl-epoch 1 --rl-metrics BERTScore,EntityMatchNLI --rl-weights 0.01,0.495,0.495 --entity-match mimic-cxr_ner.txt.gz --baseline-model out_m2trans_nll/model_31-152173.dict.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --lr 5e-6 --lr-step 32 MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll-bs-emnli

Checking Result with TensorBoard

A training result can be checked with TensorBoard.

$ tensorboard --logdir out_m2trans_nll-bs-emnli/log
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.0.0 at http://localhost:6006/ (Press CTRL+C to quit)

Evaluation using CheXbert

NOTE: This evaluation assumes that CheXbert is set up in ./CheXbert.

First, extract reference reports to a csv file.

$ python extract_reports.csv MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/mimic_cxr_sectioned.csv.gz MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/mimic-cxr-2.0.0-split.csv.gz mimic-imp
$ mv mimic-imp CheXbert/src/

Second, convert generated reports to a csv file. (TEST_SAMPLES is a path to test samples. e.g., out_m2trans_nll-bs-emnli/test_31-152173_samples.txt.gz)

$ python convert_generated.py TEST_SAMPLES gen.csv
$ mv gen.csv CheXbert/src/

Third, run CheXbert against the reference reports.

$ cd CheXbert/src/
$ python label.py -d mimic-imp/reports.csv -o mimic-imp -c chexbert.pth

Fourth, run eval_prf.py to obtain CheXbert scores.

$ cp ../../eval_prf.py . 
$ python eval_prf.py mimic-imp gen.csv gen_chex.csv
2947 references
2347 generated
...
5-micro x.xxx x.xxx x.xxx
5-acc x.xxx

Inferring from a Checkpoint

An inference from a checkpoint can be done with infer.py. (CHECKPOINT is a path to the checkpoint)

$ python infer.py --cuda --corpus mimic-cxr --cache-data cache --batch-size 24 --entity-match mimic-cxr_ner.txt.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --corpus mimic-cxr --lr-scheduler trans MIMIC_CXR_ROOT CHECKPOINT resources/glove_mimic-cxr_train.512.txt.gz out_infer

Pre-trained checkpoints for M2 Transformer can be obtained with a download script.

$ cd checkpoints
$ ./download.sh

Licence

See LICENSE and clinicgen/external/LICENSE_bleu-cider-rouge-spice for details.

The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022