Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Related tags

Deep Learningifcc
Overview

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

The reference code of Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation.

Implemented Models

Supported Radiology Report Datasets

Radiology NLI Dataset

The Radiology NLI dataset (RadNLI) is available at a corresponding PhysioNet project.

Prerequisites

  • A Linux OS (tested on Ubuntu 16.04)
  • Memory over 24GB
  • A gpu with memory over 12GB (tested on NVIDIA Titan X and NVIDIA Titan XP)

Preprocesses

Python Setup

Create a conda environment

$ conda env create -f environment.yml

NOTE : environment.yml is set up for CUDA 10.1 and cuDNN 7.6.3. This may need to be changed depending on a runtime environment.

Resize MIMIC-CXR-JPG

  1. Download MIMIC-CXR-JPG
  2. Make a resized copy of MIMIC-CXR-JPG using resize_mimic-cxr-jpg.py (MIMIC_CXR_ROOT is a dataset directory containing mimic-cxr)
    • $ python resize_mimic-cxr-jpg.py MIMIC_CXR_ROOT
  3. Create the sections file of MIMIC-CXR (mimic_cxr_sectioned.csv.gz) with create_sections_file.py
  4. Move mimic_cxr_sectioned.csv.gz to MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/

Compute Document Frequencies

Pre-calculate document frequencies that will be used in CIDEr by:

$ python cider-df.py MIMIC_CXR_ROOT mimic-cxr_train-df.bin.gz

Recognize Named Entities

Pre-recognize named entities in MIMIC-CXR by:

$ python ner_reports.py --stanza-download MIMIC_CXR_ROOT mimic-cxr_ner.txt.gz

Download Pre-trained Weights

Download pre-trained CheXpert weights, pre-trained radiology NLI weights, and GloVe embeddings

$ cd resources
$ ./download.sh

Training a Report Generation Model

First, train the Meshed-Memory Transformer model with an NLL loss.

# NLL
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --entity-match mimic-cxr_ner.txt.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --corpus mimic-cxr --lr-scheduler trans MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll

Second, further train the model a joint loss using the self-critical RL to achieve a better performance.

# RL with NLL + BERTScore + EntityMatchExact
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --rl-epoch 1 --rl-metrics BERTScore,EntityMatchExact --rl-weights 0.01,0.495,0.495 --entity-match mimic-cxr_ner.txt.gz --baseline-model out_m2trans_nll/model_31-152173.dict.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --lr 5e-6 --lr-step 32 MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll-bs-emexact
# RL with NLL + BERTScore + EntityMatchNLI
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --rl-epoch 1 --rl-metrics BERTScore,EntityMatchNLI --rl-weights 0.01,0.495,0.495 --entity-match mimic-cxr_ner.txt.gz --baseline-model out_m2trans_nll/model_31-152173.dict.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --lr 5e-6 --lr-step 32 MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll-bs-emnli

Checking Result with TensorBoard

A training result can be checked with TensorBoard.

$ tensorboard --logdir out_m2trans_nll-bs-emnli/log
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.0.0 at http://localhost:6006/ (Press CTRL+C to quit)

Evaluation using CheXbert

NOTE: This evaluation assumes that CheXbert is set up in ./CheXbert.

First, extract reference reports to a csv file.

$ python extract_reports.csv MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/mimic_cxr_sectioned.csv.gz MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/mimic-cxr-2.0.0-split.csv.gz mimic-imp
$ mv mimic-imp CheXbert/src/

Second, convert generated reports to a csv file. (TEST_SAMPLES is a path to test samples. e.g., out_m2trans_nll-bs-emnli/test_31-152173_samples.txt.gz)

$ python convert_generated.py TEST_SAMPLES gen.csv
$ mv gen.csv CheXbert/src/

Third, run CheXbert against the reference reports.

$ cd CheXbert/src/
$ python label.py -d mimic-imp/reports.csv -o mimic-imp -c chexbert.pth

Fourth, run eval_prf.py to obtain CheXbert scores.

$ cp ../../eval_prf.py . 
$ python eval_prf.py mimic-imp gen.csv gen_chex.csv
2947 references
2347 generated
...
5-micro x.xxx x.xxx x.xxx
5-acc x.xxx

Inferring from a Checkpoint

An inference from a checkpoint can be done with infer.py. (CHECKPOINT is a path to the checkpoint)

$ python infer.py --cuda --corpus mimic-cxr --cache-data cache --batch-size 24 --entity-match mimic-cxr_ner.txt.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --corpus mimic-cxr --lr-scheduler trans MIMIC_CXR_ROOT CHECKPOINT resources/glove_mimic-cxr_train.512.txt.gz out_infer

Pre-trained checkpoints for M2 Transformer can be obtained with a download script.

$ cd checkpoints
$ ./download.sh

Licence

See LICENSE and clinicgen/external/LICENSE_bleu-cider-rouge-spice for details.

List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022