Unsupervised Foreground Extraction via Deep Region Competition

Related tags

Deep LearningDRC
Overview

Unsupervised Foreground Extraction via Deep Region Competition teaser

[Paper] [Code]

The official code repository for NeurIPS 2021 paper "Unsupervised Foreground Extraction via Deep Region Competition".

Installation

The implementation depends on the following commonly used packages, all of which can be installed via conda.

Package Version
PyTorch ≥ 1.8.1
numpy not specified (we used 1.20.0)
opencv-python 4.5.1.48
pandas 1.2.3

Datasets and Pretrained Models

Datasets and pretrained models are available at: https://drive.google.com/drive/folders/1qItekRJcOYBIcVi4ChrcyzwFVl-lrw23?usp=sharing

Please follow the following commands to obtain the CLEVR6 dataset:

# Download `clevr_with_masks_train.tfrecords` from deepmind gcloud
cd drc_workspace/scripts
wget https://storage.googleapis.com/multi-object-datasets/clevr_with_masks/clevr_with_masks_train.tfrecords
python load_clevr_with_masks.py

This will save the generated dataset in the meta folder.

Training

# Train a foreground extractor with specified checkpoint folder
python main.py --checkpoints <TO_BE_SPECIFIED>

You may specify the value of arguments during training. Please find the available arguments in the config.yml.example file in drc_workspace folder. Note that config.yml.example file provides the training parameters on full CUB dataset. Parameters on other datasets and data splits can be found in the drc_workspace/config_gallery folder.

Note that DATA indicates the dataset to use (CUB, DOG, CAR, CLEVR and TEXTURED). The path to your dataset folder, i.e., ROOT_DIR, needs to be specified before running the script.

Testing

# Evaluate the extractor
python test.py --checkpoints <TO_BE_SPECIFIED>

Citation

@inproceedings{yu2021unsupervised,
  author = {Yu, Peiyu and Xie, Sirui and Ma, Xiaojian and Zhu, Yixin and Wu, Ying Nian and Zhu, Song-Chun},
  title = {Unsupervised Foreground Extraction via Deep Region Competition},
  booktitle = {Proceedings of Advances in Neural Information Processing Systems (NeurIPS)},
  month = {December},
  year = {2021}
}
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
Fang Zhonghao 13 Nov 19, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022