Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Overview

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMillan, Julie Dorsey

[Paper] [Project]

teaser

Drawing Dataset

The dataset consists of 1,498 tracings and freehand drawings by 110 participants for 100 image prompts. Our drawings are registered to the prompts and include vector-based timestamped strokes collected via stylus input.

Please right click the links below and "Save link as..." if it doesn't download automatically.

Image prompts.

All rendered tracings and freehand drawings in SVG and PNG.

Raw JSON data: tracings, freehand drawings, registered freehand drawings.

JSON data format:

{
  // each prompt
  "image": {
    // each drawing
    "participant": [
      // each stroke
      {
        "path": string (Unix timestamp, x, y coordinates at each vertex separated by comma)
        "pressure": string (pressure value at each vertex separated by comma)
        "color": string (hex code, e.g., "#000000")
        "width": integer (stroke width on a 800x800 canvas)
        "opacity": float (alpha value from 0 to 1)
      }
      ...
    ]
    ...
  }
  ...
}

Analysis Code

More to come, stay tuned!

Citation

The dataset and code are released for academic research use only under CC BY-NC-SA 4.0.

If you use the dataset or code for your research, please cite this paper:

@article{Wang:2021:Tracing,
  author = {Wang, Zeyu and Qiu, Sherry and Feng, Nicole and Rushmeier,  Holly and McMillan, Leonard and Dorsey, Julie},
  title = {Tracing Versus Freehand for Evaluating Computer-Generated Drawings},
  year = {2021},
  issue_date = {August 2021},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  volume = {40},
  number = {4},
  issn = {0730-0301},
  url = {https://doi.org/10.1145/3450626.3459819},
  doi = {10.1145/3450626.3459819},
  journal = {ACM Trans. Graph.},
  month = aug,
  numpages = {12},
  keywords = {sketch dataset, drawing process, stroke analysis}
}
Owner
Zach Zeyu Wang
PhD candidate in computer graphics
Zach Zeyu Wang
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022