This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Overview

Coresets via Bilevel Optimization

This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" https://arxiv.org/pdf/2006.03875.pdf.

This repository also contains the implementation of the selection via Nyström proxy used for selecting batches in "Semi-supervised Batch Active Learning via Bilevel Optimization" https://arxiv.org/pdf/2010.09654. Selection via the Nyström proxy supports data augmentation, it is faster for larger coresets and hence supersedes the representer proxy in data summarization scenarios.

Overview

To get started with the library, check out demo.ipynb Open In Colab that shows how to build coresets for a toy regression problem and for MNIST classification. The following snippet outlines the general usage:

import bilevel_coreset
import loss_utils
import numpy as np

x, y = load_data()

# define proxy kernel function
linear_kernel_fn = lambda x1, x2: np.dot(x1, x2.T)

coreset_size = 10

coreset_constructor = bilevel_coreset.BilevelCoreset(outer_loss_fn=loss_utils.cross_entropy,
                                                    inner_loss_fn=loss_utils.cross_entropy,
                                                    out_dim=y.shape[1])
coreset_inds, coreset_weights = coreset_constructor.build_with_representer_proxy_batch(x, y, 
                                                    coreset_size, linear_kernel_fn, inner_reg=1e-3)
x_coreset, y_coreset = x[coreset_inds], y[coreset_inds]

Note: if you are planning to use the library on your problem, the most important hyperparameter to tune is inner_reg, the regularizer of the inner objective in the representer proxy - try the grid [10-2, 10-3, 10-4, 10-5, 10-6].

Requirements

Python 3 is required. To install the required dependencies, run:

pip install -r requirements.txt

If you are planning to use the NTK proxy, consider installing the GPU version of JAX: instructions here. If you would like to run the experiments, add the project root to your PYTHONPATH env variable.

Data Summarization

Change dir to data_summarization. For running and plotting the MNIST summarization experiment, adjust the globals in runner.py to your setup and run:

python runner.py --exp cnn_mnist
python plotter.py --exp cnn_mnist

Similarly, for the CIFAR-10 summary for a version of ResNet-18 run:

python runner.py --exp resnet_cifar
python plotter.py --exp resnet_cifar

For running the Kernel Ridge Regression experiment, you first need to generate the kernel with python generate_cntk.py. Note: this implementation differs in the kernel choice in generate_kernel() from the paper. For details on the original kernel, please refer to the paper. Once you generated the kernel, generate the results by:

python runner.py --exp krr_cifar
python plotter.py --exp krr_cifar 

Continual Learning and Streaming

We showcase the usage our coreset construction in continual learning and streaming with memory replay. The buffer regularizer beta is tuned individually for each method. We provide the best betas from [0.01, 0.1, 1.0, 10.0, 100.0, 1000.0] for each method in cl_results/ and streaming_results/.

Running the Experiments

Change dir to cl_streaming. After this, you can run individual experiments, e.g.:

python cl.py --buffer_size 100 --dataset splitmnist --seed 0 --method coreset --beta 100.0

You can also run the continual learning and streaming experiments with grid search over beta on datasets derived from MNIST by adjusting the globals in runner.py to your setup and running:

python runner.py --exp cl
python runner.py --exp streaming
python runner.py --exp imbalanced_streaming

The table of result can be displayed by running python process_results.py with the corresponding --exp argument. For example, python process_results.py --exp imbalanced_streaming produces:

Method \ Dataset splitmnistimbalanced
reservoir 80.60 +- 4.36
cbrs 89.71 +- 1.31
coreset 92.30 +- 0.23

The experiments derived from CIFAR-10 can be similarly run by:

python cifar_runner.py --exp cl
python process_results --exp splitcifar
python cifar_runner.py --exp imbalanced_streaming
python process_results --exp imbalanced_streaming_cifar

Selection via the Nyström proxy

The Nyström proxy was proposed to support data augmentations. It is also faster for larger coresets than the representer proxy. An example of running the selection on CIFAR-10 can be found in batch_active_learning/nystrom_example.py.

Citation

If you use the code in a publication, please cite the paper:

@article{borsos2020coresets,
      title={Coresets via Bilevel Optimization for Continual Learning and Streaming}, 
      author={Zalán Borsos and Mojmír Mutný and Andreas Krause},
      year={2020},
      journal={arXiv preprint arXiv:2006.03875}
}
Owner
Zalán Borsos
PhD student at ETH Zurich
Zalán Borsos
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022