PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

Overview

VIN: Value Iteration Networks

This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version)

Architecture of Value Iteration Network

Key idea

  • A fully differentiable neural network with a 'planning' sub-module.
  • Value Iteration = Conv Layer + Channel-wise Max Pooling
  • Generalize better than reactive policies for new, unseen tasks.

Learned Reward Image and Its Value Images for each VI Iteration

Visualization Grid world Reward Image Value Images
8x8
16x16
28x28

Dependencies

This repository requires following packages:

  • Python >= 3.6
  • Numpy >= 1.12.1
  • PyTorch >= 0.1.10
  • SciPy >= 0.19.0
  • visdom >= 0.1

Datasets

Each data sample consists of (x, y) coordinates of current state in grid world, followed by an obstacle image and a goal image.

Dataset size 8x8 16x16 28x28
Train set 77760 776440 4510695
Test set 12960 129440 751905

Running Experiment: Training

Grid world 8x8

python run.py --datafile data/gridworld_8x8.npz --imsize 8 --lr 0.005 --epochs 30 --k 10 --batch_size 128

Grid world 16x16

python run.py --datafile data/gridworld_16x16.npz --imsize 16 --lr 0.008 --epochs 30 --k 20 --batch_size 128

Grid world 28x28

python run.py --datafile data/gridworld_28x28.npz --imsize 28 --lr 0.003 --epochs 30 --k 36 --batch_size 128

Flags:

  • datafile: The path to the data files.
  • imsize: The size of input images. From: [8, 16, 28]
  • lr: Learning rate with RMSProp optimizer. Recommended: [0.01, 0.005, 0.002, 0.001]
  • epochs: Number of epochs to train. Default: 30
  • k: Number of Value Iterations. Recommended: [10 for 8x8, 20 for 16x16, 36 for 28x28]
  • ch_i: Number of channels in input layer. Default: 2, i.e. obstacles image and goal image.
  • ch_h: Number of channels in first convolutional layer. Default: 150, described in paper.
  • ch_q: Number of channels in q layer (~actions) in VI-module. Default: 10, described in paper.
  • batch_size: Batch size. Default: 128

Visualization with Visdom

We shall visualize the learned reward image and its corresponding value images for each VI iteration by using visdom.

Firstly start the server

python -m visdom.server

Open Visdom in browser in http://localhost:8097

Then run following to visualize learn reward and value images.

python vis.py --datafile learned_rewards_values_28x28.npz

NOTE: If you would like to produce GIF animation of value images on your own, the following command might be useful.

convert -delay 20 -loop 0 *.png value_function.gif

Benchmarks

GPU: TITAN X

Performance: Test Accuracy

NOTE: This is the accuracy on test set. It is different from the table in the paper, which indicates the success rate from rollouts of the learned policy in the environment.

Test Accuracy 8x8 16x16 28x28
PyTorch 99.16% 92.44% 88.20%
TensorFlow 99.03% 90.2% 82%

Speed with GPU

Speed per epoch 8x8 16x16 28x28
PyTorch 3s 15s 100s
TensorFlow 4s 25s 165s

Frequently Asked Questions

  • Q: How to get reward image from observation ?

    • A: Observation image has 2 channels. First channel is obstacle image (0: free, 1: obstacle). Second channel is goal image (0: free, 10: goal). For example, in 8x8 grid world, the shape of an input tensor with batch size 128 is [128, 2, 8, 8]. Then it is fed into a convolutional layer with [3, 3] filter and 150 feature maps, followed by another convolutional layer with [3, 3] filter and 1 feature map. The shape of the output tensor is [128, 1, 8, 8]. This is the reward image.
  • Q: What is exactly transition model, and how to obtain value image by VI-module from reward image ?

    • A: Let us assume batch size is 128 under 8x8 grid world. Once we obtain the reward image with shape [128, 1, 8, 8], we do convolutional layer for q layers in VI module. The [3, 3] filter represents the transition probabilities. There is a set of 10 filters, each for generating a feature map in q layers. Each feature map corresponds to an "action". Note that this is larger than real available actions which is only 8. Then we do a channel-wise Max Pooling to obtain the value image with shape [128, 1, 8, 8]. Finally we stack this value image with reward image for a new VI iteration.

References

Further Readings

Owner
Xingdong Zuo
AI in well-being is my dream. Neural networks need to understand the world causally.
Xingdong Zuo
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022