PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

Overview

VIN: Value Iteration Networks

This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version)

Architecture of Value Iteration Network

Key idea

  • A fully differentiable neural network with a 'planning' sub-module.
  • Value Iteration = Conv Layer + Channel-wise Max Pooling
  • Generalize better than reactive policies for new, unseen tasks.

Learned Reward Image and Its Value Images for each VI Iteration

Visualization Grid world Reward Image Value Images
8x8
16x16
28x28

Dependencies

This repository requires following packages:

  • Python >= 3.6
  • Numpy >= 1.12.1
  • PyTorch >= 0.1.10
  • SciPy >= 0.19.0
  • visdom >= 0.1

Datasets

Each data sample consists of (x, y) coordinates of current state in grid world, followed by an obstacle image and a goal image.

Dataset size 8x8 16x16 28x28
Train set 77760 776440 4510695
Test set 12960 129440 751905

Running Experiment: Training

Grid world 8x8

python run.py --datafile data/gridworld_8x8.npz --imsize 8 --lr 0.005 --epochs 30 --k 10 --batch_size 128

Grid world 16x16

python run.py --datafile data/gridworld_16x16.npz --imsize 16 --lr 0.008 --epochs 30 --k 20 --batch_size 128

Grid world 28x28

python run.py --datafile data/gridworld_28x28.npz --imsize 28 --lr 0.003 --epochs 30 --k 36 --batch_size 128

Flags:

  • datafile: The path to the data files.
  • imsize: The size of input images. From: [8, 16, 28]
  • lr: Learning rate with RMSProp optimizer. Recommended: [0.01, 0.005, 0.002, 0.001]
  • epochs: Number of epochs to train. Default: 30
  • k: Number of Value Iterations. Recommended: [10 for 8x8, 20 for 16x16, 36 for 28x28]
  • ch_i: Number of channels in input layer. Default: 2, i.e. obstacles image and goal image.
  • ch_h: Number of channels in first convolutional layer. Default: 150, described in paper.
  • ch_q: Number of channels in q layer (~actions) in VI-module. Default: 10, described in paper.
  • batch_size: Batch size. Default: 128

Visualization with Visdom

We shall visualize the learned reward image and its corresponding value images for each VI iteration by using visdom.

Firstly start the server

python -m visdom.server

Open Visdom in browser in http://localhost:8097

Then run following to visualize learn reward and value images.

python vis.py --datafile learned_rewards_values_28x28.npz

NOTE: If you would like to produce GIF animation of value images on your own, the following command might be useful.

convert -delay 20 -loop 0 *.png value_function.gif

Benchmarks

GPU: TITAN X

Performance: Test Accuracy

NOTE: This is the accuracy on test set. It is different from the table in the paper, which indicates the success rate from rollouts of the learned policy in the environment.

Test Accuracy 8x8 16x16 28x28
PyTorch 99.16% 92.44% 88.20%
TensorFlow 99.03% 90.2% 82%

Speed with GPU

Speed per epoch 8x8 16x16 28x28
PyTorch 3s 15s 100s
TensorFlow 4s 25s 165s

Frequently Asked Questions

  • Q: How to get reward image from observation ?

    • A: Observation image has 2 channels. First channel is obstacle image (0: free, 1: obstacle). Second channel is goal image (0: free, 10: goal). For example, in 8x8 grid world, the shape of an input tensor with batch size 128 is [128, 2, 8, 8]. Then it is fed into a convolutional layer with [3, 3] filter and 150 feature maps, followed by another convolutional layer with [3, 3] filter and 1 feature map. The shape of the output tensor is [128, 1, 8, 8]. This is the reward image.
  • Q: What is exactly transition model, and how to obtain value image by VI-module from reward image ?

    • A: Let us assume batch size is 128 under 8x8 grid world. Once we obtain the reward image with shape [128, 1, 8, 8], we do convolutional layer for q layers in VI module. The [3, 3] filter represents the transition probabilities. There is a set of 10 filters, each for generating a feature map in q layers. Each feature map corresponds to an "action". Note that this is larger than real available actions which is only 8. Then we do a channel-wise Max Pooling to obtain the value image with shape [128, 1, 8, 8]. Finally we stack this value image with reward image for a new VI iteration.

References

Further Readings

Owner
Xingdong Zuo
AI in well-being is my dream. Neural networks need to understand the world causally.
Xingdong Zuo
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022