A webpage that utilizes machine learning to extract sentiments from tweets.

Overview

Tweets_Classification_Webpage

Tweets_gif_2

The goal of this project is to be able to predict what rating customers on social media platforms would give to products. This enables businesses to better understand what customers think of their products as social media platforms such a Twitter and Youtube do not have rating systems.

This web application can search through Twitter and extract tweets which relate to a given keyword and classify the tweets into 5 categories. These categories represent ratings (out of 5) where 1 is bad and 5 is excellent. Ideally, the keywords should be products but, the webpage can also take in just about anything so long as people are talking about it on Twitter.

This web application utilizes a neural network and BERT (Bidirectional Encoder Representations for Transformers) to make the classifications of the tweets. The machine learning models are based on the Is Bigger Better? Text Classification using state-of-the-art BERT with limited Compute research paper by: Ayaz Nakhuda, David Ferris and Jastejpal Soora. This paper can be visted using this link: https://github.com/AyazNakhudaGitHub/BERT_Customer_Reviews_Classification/blob/main/Report_Group_24.pdf

Python, Django, Flask, HTML5 and CSS3 were mainly used.



To run this project locally one will need to:

Screen Shot 2021-12-29 at 6 50 37 PM

  • Get the credentials for access to the Twitter API and input them into the file sentiment_BERT_Web_Project/sentiment_BERT_Web_Project/views.py

Screen Shot 2021-12-29 at 6 55 27 PM

  • Run the API as seen in the image below:

Screen Shot 2021-12-29 at 6 53 16 PM

  • Type this command to get the wepage running: python manage.py runserver


Future plans to host this web application and the API on the Google Cloud Platform is currently in the works.



While a GIF is included, a video is provided to give a live demo:

BERT_Webpage.Demonstration.mp4
Owner
Ayaz Nakhuda
Computer Science Student at Ryerson University. Interested in data science, machine learning and software engineering.
Ayaz Nakhuda
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 208 Dec 27, 2022
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022