NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

Overview

NaturalCC

NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks, e.g., code summarization, code retrieval, code completion, code clone detection and type inference. Our vision is to bridge the gap between programming language and natural language through machine learning techniques.

Version Python pytorch license


⭐ Features

  • A collection of code corpus with data preprocessing
  • Performance benchmark
  • Mixed precision training
    • Nvidia APEX
    • Automatic Mixed Precision
  • Multi-GPU training
  • Better logging output
  • Various Implementations:
    • tensorflow gradient clipping
    • optimizers or learning schedulers
    • baseline models
    • binary data formats

πŸš€ Installation

Requirements

  • PyTorch version >= 1.6.0
  • Python version >= 3.6
  • GCC/G++ > 5.0
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • (optional) For faster training, you need to install NVIDIA's apex library.

1. Install prerequisite libraries

git clone https://github.com/xcodemind/naturalcc && cd naturalcc
pip install -r requirements.txt

Once you installed prerequisite libraries, you can check them via python -m env_test

2. Build or install NaturalCC

Export your NaturalCC cache directory (data and models will be saved in this directory) to user variables(~/.bashrc or ~/.zshrc).

> ~/.bashrc">
echo "export NCC=/data/ncc_data" >> ~/.bashrc

Note: PyCharm cannot get environment variables and, therefore, we recommend you to register your NCC variable at ncc/__init__.py.

Compile Cython files to accelerate programs and register NaturalCC into your pip list

# compile for debug
# python setup.py build_ext --inplace
# install 
pip install --editable ./

3. Half precision computation (optional)

NaturalCC supports half precision training.

  • If your Pytorch.__version__ < 1.6.0 and nvcc -V is runnable, please install apex.
  • Otherwise, use Automatic Mixed Precision (AMP). Available Now (set amp: 1 in yaml file, An example).

4. Install GCC/G++ with conda (if you do not have permission)

Since NCC is build via Cython, your GCC/G++ version should be greater than 4.9. If you have the root permission, update GCC/G++; otherwise, install GCC/G++ with conda.

# install GCC/G++ with conda
conda install -c anaconda gxx_linux-64
conda install -c conda-forge gcc_linux-64
cd ~/anaconda/envs/XXX/bin
ln -s x86_64-conda_cos6-linux-gnu-gcc gcc
ln -s x86_64-conda_cos6-linux-gnu-g++ g++
# check
conda deactivate
conda activate XXX
>> type "gcc/g++ -v" in terminals

πŸ“š Dataset

Currently, we have processed the following datasets:

πŸ€– Implementations

Code retrieval (search)

Code completion

Heterogeneous mapping

Code summarization

πŸ“‹ Experiments

Code Summarization

Dataset: Python (Wan et al.)

BLEU-4 METEOR ROUGE-L Cost Logs
Seq2Seq+Attn 25.57 14.40 39.41 0.09s/b click here
Tree2Seq+Attn 23.35 12.59 36.49 0.48s/b click here
Transformer 30.64 17.65 44.59 0.26s/b click here
Transformer+RPE 31.57 17.74 45.18 0.27s/b click here
PLBART 32.71 18.13 46.05 0.80s/b TBC

Code Retrieval

Dataset: CodeSearchNet (Husain et al.)

MRR Go Java JS PHP Python Ruby Cost Logs
NBOW 66.59 59.92 47.15 54.75 63.33 42.86 0.16s/b click here
ConV1d 70.87 60.49 38.81 61.92 67.29 36.53 0.30s/b click here
BiRNN 65.80 48.60 23.23 51.36 48.28 19.35 0.74s/b click here
SelfAttn 78.45 66.55 50.38 65.78 79.09 47.96 0.25s/b click here

Code Completion

Dataset: Py150 (official processed) (raw)

MRR Attr Num Name Param Tokens Cost Logs
LSTM 51.67 47.45 46.52 66.06 73.73 0.31s/b click here
GTP-2 70.37 62.20 63.84 73.54 82.17 0.43s/b click here
TravTrans 72.08 68.55 76.33 71.08 83.17 0.43s/b click here

Type Inference

Dataset: CodeSearchNet-Java (Husain et al.)

[email protected] (All types) [email protected] (All types) [email protected] (Any types) [email protected] (Any types) Cost Logs
DeepTyper 0.52 0.67 0.43 0.67 0.42s/b TBC
Transformer 0.32 0.64 0.37 0.75 0.85s/b TBC

Heterogeneous Mapping

Dataset: OpenCL (Grewe et al.)

Accuracy AMD NVIDIA
Static mapping 58.82 56.91
Decision tree 70.29 74.56
Inst2vec 82.79 81.76
DeepTune 83.24 80.15

🏫 Examples & Tutorials

All the running commands here should be executed in the root of project folder (the path of your naturalcc). For example, in my environment I will stay at /data/wanyao/Dropbox/ghproj-v100/naturalcc.

We also have more detailed READMEs to start your tutorial of NaturalCC.

Step 1: Download and process a dataset from datasets, and follow the instructions from the README.md file.

# ref: dataset/python_wan/README.md
# download dataset
bash dataset/python_wan/download.sh
# clean data
python -m dataset.python_wan.clean
# cast data attributes into different files
python -m dataset.python_wan.attributes_cast

# ref: dataset/python_wan/summarization/README.md
# save code tokens and docstirng tokens into MMAP format
python -m dataset.python_wan.summarization.preprocess

Step 2 (optional): Register your self-defined models

  • If you want to create a new model, please add your model at ncc/models and ncc/modules.

  • If your training policy are more complex than we thought, you should update your criterions and training procedure at ncc/criterions and ncc/trainers, respectively.

    Do not forget to update your self defined module at ncc/XX/__init__.py.

Step 3: Training and inference.

  • Select a task and a model from task list and follow the instructions in its README.md to start your learning.
# ref: run/summarization/transformer/README.md
# train
CUDA_VISIBLE_DEVICES=0,1,2,3 nohup python -m run.summarization.transformer.train -f config/python_wan/python > run/summarization/transformer/config/python_wan/python.log 2>&1 &
# inference
CUDA_VISIBLE_DEVICES=0 python -m run.summarization.transformer.eval -f config/python_wan/python -o run/summarization/transformer/config/python_wan/python.txt

❓ FAQ

Please fell free to contact me if you have any troubles.

😘 License and Acknowledgement

NaturalCC is MIT-licensed. The license applies to the pre-trained models as well. This project is also highly inspired by Fairseq and AllenNLP.

πŸ”— Related Links

NaturalCC-demo
About us: XCodeMind

❀️ Citation

Please cite as:

under reviewing
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome πŸ™Œ to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian HofstΓ€tter 3 Nov 03, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN β €β €β € A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022