Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Overview

Cross Domain Facial Expression Recognition Benchmark

Implementation of papers:

Pipeline

Environment

Ubuntu 16.04 LTS, Python 3.5, PyTorch 1.3

Note: We also provide docker image for this project, click here. (Tag: py3-pytorch1.3-agra)

Datasets

To apply for the AFE, please complete the AFE Database User Agreement and submit it to [email protected] or [email protected].

Note:

  1. The AFE Database Agreement needs to be signed by the faculty member at a university or college and sent it by email.
  2. In order to comply with relevant regulations, you need to apply for the image data of the following data sets by yourself, including CK+, JAFFE, SFEW 2.0, FER2013, ExpW, RAF.

Pre-Train Model

You can download pre-train models in Baidu Drive (password: tzrf) and OneDrive.

Note: To replace backbone of each methods, you should modify and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py) in the folder where you want to use the method.

Usage

Before run these script files, you should download datasets and pre-train model, and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py).

Run ICID

cd ICID
bash Train.sh

Run DFA

cd DFA
bash Train.sh

Run LPL

cd LPL
bash Train.sh

Run DETN

cd DETN
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run FTDNN

cd FTDNN
bash Train.sh

Run ECAN

cd ECAN
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run CADA

cd CADA
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run SAFN

cd SAFN
bash TrainWithSAFN.sh

Run SWD

cd SWD
bash Train.sh

Run AGRA

cd AGRA
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Result

Souce Domain: RAF

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-50 74.42 50.70 48.85 53.70 69.54 59.44
DFA ResNet-50 64.26 44.44 43.07 45.79 56.86 50.88
LPL ResNet-50 74.42 53.05 48.85 55.89 66.90 59.82
DETN ResNet-50 78.22 55.89 49.40 52.29 47.58 56.68
FTDNN ResNet-50 79.07 52.11 47.48 55.98 67.72 60.47
ECAN ResNet-50 79.77 57.28 52.29 56.46 47.37 58.63
CADA ResNet-50 72.09 52.11 53.44 57.61 63.15 59.68
SAFN ResNet-50 75.97 61.03 52.98 55.64 64.91 62.11
SWD ResNet-50 75.19 54.93 52.06 55.84 68.35 61.27
Ours ResNet-50 85.27 61.50 56.43 58.95 68.50 66.13

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-18 67.44 48.83 47.02 53.00 68.52 56.96
DFA ResNet-18 54.26 42.25 38.30 47.88 47.42 46.02
LPL ResNet-18 72.87 53.99 49.31 53.61 68.35 59.63
DETN ResNet-18 64.19 52.11 42.25 42.01 43.92 48.90
FTDNN ResNet-18 76.74 50.23 49.54 53.28 68.08 59.57
ECAN ResNet-18 66.51 52.11 48.21 50.76 48.73 53.26
CADA ResNet-18 73.64 55.40 52.29 54.71 63.74 59.96
SAFN ResNet-18 68.99 49.30 50.46 53.31 68.32 58.08
SWD ResNet-18 72.09 53.52 49.31 53.70 65.85 58.89
Ours ResNet-18 77.52 61.03 52.75 54.94 69.70 63.19

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID MobileNet V2 57.36 37.56 38.30 44.47 60.64 47.67
DFA MobileNet V2 41.86 35.21 29.36 42.36 43.66 38.49
LPL MobileNet V2 59.69 40.38 40.14 50.13 62.26 50.52
DETN MobileNet V2 53.49 40.38 35.09 45.88 45.26 44.02
FTDNN MobileNet V2 71.32 46.01 45.41 49.96 62.87 55.11
ECAN MobileNet V2 53.49 43.08 35.09 45.77 45.09 44.50
CADA MobileNet V2 62.79 53.05 43.12 49.34 59.40 53.54
SAFN MobileNet V2 66.67 45.07 40.14 49.90 61.40 52.64
SWD MobileNet V2 68.22 55.40 43.58 50.30 60.04 55.51
Ours MobileNet V2 72.87 55.40 45.64 51.05 63.94 57.78

Souce Domain: AFE

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-50 56.59 57.28 44.27 46.92 52.91 51.59
DFA ResNet-50 51.86 52.70 38.03 41.93 60.12 48.93
LPL ResNet-50 73.64 61.03 49.77 49.54 55.26 57.85
DETN ResNet-50 56.27 52.11 44.72 42.17 59.80 51.01
FTDNN ResNet-50 61.24 57.75 47.25 46.36 52.89 53.10
ECAN ResNet-50 58.14 56.91 46.33 46.30 61.44 53.82
CADA ResNet-50 72.09 49.77 50.92 50.32 61.70 56.96
SAFN ResNet-50 73.64 64.79 49.08 48.89 55.69 58.42
SWD ResNet-50 72.09 61.50 48.85 48.83 56.22 57.50
Ours ResNet-50 78.57 65.43 51.18 51.31 62.71 61.84

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-18 54.26 51.17 47.48 46.44 54.85 50.84
DFA ResNet-18 35.66 45.82 34.63 36.88 62.53 43.10
LPL ResNet-18 67.44 62.91 48.39 49.82 54.51 56.61
DETN ResNet-18 44.19 47.23 45.46 45.39 58.41 48.14
FTDNN ResNet-18 58.91 59.15 47.02 48.58 55.29 53.79
ECAN ResNet-18 44.19 60.56 43.26 46.15 62.52 51.34
CADA ResNet-18 72.09 53.99 48.39 48.61 58.50 56.32
SAFN ResNet-18 68.22 61.50 50.46 50.07 55.17 57.08
SWD ResNet-18 77.52 59.15 50.69 51.84 56.56 59.15
Ours ResNet-18 79.84 61.03 51.15 51.95 65.03 61.80

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID MobileNet V2 55.04 42.72 34.86 39.94 44.34 43.38
DFA MobileNet V2 44.19 27.70 31.88 35.95 61.55 40.25
LPL MobileNet V2 69.77 50.23 43.35 45.57 51.63 52.11
DETN MobileNet V2 57.36 54.46 32.80 44.11 64.36 50.62
FTDNN MobileNet V2 65.12 46.01 46.10 46.69 53.02 51.39
ECAN MobileNet V2 71.32 56.40 37.61 45.34 64.00 54.93
CADA MobileNet V2 70.54 45.07 40.14 46.72 54.93 51.48
SAFN MobileNet V2 62.79 53.99 42.66 46.61 52.65 51.74
SWD MobileNet V2 64.34 53.52 44.72 50.24 55.85 53.73
Ours MobileNet V2 75.19 54.46 47.25 47.88 61.10 57.18

Mean of All Methods

Souce Domain: RAF

Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ResNet-50 75.87 54.30 54.49 54.82 62.09 59.51
ResNet-18 69.43 51.88 47.94 51.72 61.26 56.45
MobileNet V2 60.78 45.15 39.59 47.92 56.46 49.98

Souce Domain: AFE

Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ResNet-50 65.41 57.93 47.04 47.26 57.87 55.10
ResNet-18 60.23 56.25 46.95 47.57 58.34 53.87
MobileNet V2 63.57 48.46 40.14 44.91 56.34 50.68

Citation

@article{chen2020cross,
  title={Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchmark and Adversarial Graph Learning},
  author={Chen, Tianshui and Pu, Tao and Wu, Hefeng and Xie, Yuan and Liu, Lingbo and Lin, Liang},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  pages={1-1},
  doi={10.1109/TPAMI.2021.3131222}
}

@inproceedings{xie2020adversarial,
  title={Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition},
  author={Xie, Yuan and Chen, Tianshui and Pu, Tao and Wu, Hefeng and Lin, Liang},
  booktitle={Proceedings of the 28th ACM international conference on Multimedia},
  year={2020}
}

Contributors

For any questions, feel free to open an issue or contact us:

Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022