Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Overview

Cascaded-FCN

This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of axial CT images and a python wrapper for dense 3D Conditional Random Fields 3D CRFs.

This work was published in MICCAI 2016 paper (arXiv link) titled :

Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional 
Neural Networks and 3D Conditional Random Fields

Caffe

Quick Start

If you want to use our code we offer an docker image, which runs our code and has all dependencies installed including the correct caffe version. After having installed docker and nvidia docker:

sudo GPU=0 nvidia-docker run -v $(pwd):/data -P --net=host --workdir=/Cascaded-FCN -ti --privileged patrickchrist/cascadedfcn bash

And than start jupyter notebook and browse to localhost:8888

jupyter notebook

Tensorflow

Please look at Readme and Documentation at https://github.com/FelixGruen/tensorflow-u-net

Citation

If you have used these models in your research please use the following BibTeX for citation :

@Inbook{Christ2016,
title="Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields",
author="Christ, Patrick Ferdinand and Elshaer, Mohamed Ezzeldin A. and Ettlinger, Florian and Tatavarty, Sunil and Bickel, Marc and Bilic, Patrick and Rempfler, Markus and Armbruster, Marco and Hofmann, Felix and D'Anastasi, Melvin and Sommer, Wieland H. and Ahmadi, Seyed-Ahmad and Menze, Bjoern H.",
editor="Ourselin, Sebastien and Joskowicz, Leo and Sabuncu, Mert R. and Unal, Gozde and Wells, William",
bookTitle="Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II",
year="2016",
publisher="Springer International Publishing",
address="Cham",
pages="415--423",
isbn="978-3-319-46723-8",
doi="10.1007/978-3-319-46723-8_48",
url="http://dx.doi.org/10.1007/978-3-319-46723-8_48"
}
@ARTICLE{2017arXiv170205970C,
   author = {{Christ}, P.~F. and {Ettlinger}, F. and {Gr{\"u}n}, F. and {Elshaera}, M.~E.~A. and 
	{Lipkova}, J. and {Schlecht}, S. and {Ahmaddy}, F. and {Tatavarty}, S. and 
	{Bickel}, M. and {Bilic}, P. and {Rempfler}, M. and {Hofmann}, F. and 
	{Anastasi}, M.~D and {Ahmadi}, S.-A. and {Kaissis}, G. and {Holch}, J. and 
	{Sommer}, W. and {Braren}, R. and {Heinemann}, V. and {Menze}, B.},
    title = "{Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1702.05970},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition, Computer Science - Artificial Intelligence},
     year = 2017,
}
@inproceedings{Christ2017SurvivalNetPP,
  title={SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks},
  author={Patrick Ferdinand Christ and Florian Ettlinger and Georgios Kaissis and Sebastian Schlecht and Freba Ahmaddy and Felix Gr{\"{u}n and Alexander Valentinitsch and Seyed-Ahmad Ahmadi and Rickmer Braren and Bjoern H. Menze},
  booktitle={ISBI},
  year={2017}
}

Description

This work uses 2 cascaded UNETs,

  1. In step1, a UNET segments the liver from an axial abdominal CT slice. The segmentation output is a binary mask with bright pixels denoting the segmented object. By segmenting all slices in a volume we obtain a 3D segmentation.
  2. (Optional) We enhance the liver segmentation using 3D dense CRF (conditional random field). The resulting enhanced liver segmentation is then used further for step2.
  3. In step2 another UNET takes an enlarged liver slice and segments its lesions.

The input to both networks is 572x572 generated by applying reflection mirroring at all 4 sides of a 388x388 slice. The boundary 92 pixels are reflecting, resulting in (92+388+92)x(92+388+92) = 572x572.

An illustration of the pipeline is shown below :

Illustration of the CascadedFCN pipeline

For detailed Information have a look in our presentation

3D Conditional Random Field 3DCRF

You can find the 3D CRF at 3DCRF-python. Please follow the installation description in the Readme.

License

These models are published with unrestricted use for research and educational purposes. For commercial use, please refer to the paper authors.

Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
đŸ•šī¸ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022