Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

Overview

PythonTextObfuscator

Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Example

Requirements:

python3

For the Selenium Obfuscator:

    -Selenium
    
    -Firefox
    
    -Geckodriver

In the Selenium Obfuscator:

-The major benefit is that you can translate excel documents, the downside is that after 10 or so document translations, Google blocks your ip for a while.

-Translation is generally slower and more limited using selenium as a browser tab is being used to scrape the data. Also beware of RAM usage.

-May no longer be supported in the future due to its drawbacks.

In the Urllib Obfuscator:

-Translation is generally faster and uses very little resources as only html is downloaded through a request. Multiprocessing also allows simultanious requests and can be used to the full extent without worrying about RAM usage.

—Split by length is faster and uses less requests (better for longer texts)

—Split by newline is slower and uses more requests but adds much more translation variety.

-Reminder: Since google has a url request limit, you'll need to switch VPN locations when the request limit is hit.

    ——Don't worry too much though, as it takes quite a bit of requests to get to that point, and the block only lasts for around an hour.
You might also like...
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

Auto translate textbox from Japanese to English or Indonesia
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

translate using your voice
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

Translate U is capable of translating the text present in an image from one language to the other.
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Graphical user interface for Argos Translate
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Comments
  • Attempt to decode JSON with unexpected mimetype: text/plain

    Attempt to decode JSON with unexpected mimetype: text/plain

    I'm not sure what's causing this, as the last time I tried this release, this issue was not present. If it's accessing content server-side, then it might be that the server has had a config change resulting in it returning a different mimetype?

    I get the error message below consistently in the console, with %2E being added to the end of the URL each time. It does seem like some translation does happen; in this case, I inputted "Test", and the URL ended with "Hlola".

    https://translate.alefvanoon.xyz/api/v1/zu/mi/Hlola%2E 0, message='Attempt to decode JSON with unexpected mimetype: text/plain; charset=utf-8', url=URL('https://translate.alefvanoon.xyz/api/v1/zu/mi/Hlola')

    From what I've gathered looking online, the issue lies in either line 13, line 469, or both.

    return (await response.json())['translation'].replace('/','⁄')

    text = (await response.json())['translation'].replace('/','⁄')

    Some of the solutions online referred to adding "content_type=None" or "content_type='text/plain'" into the brackets after "json", but this only seemed to cause further issues for me.

    opened by UltraHylia 2
  • Program Freezes Up and Looping Error

    Program Freezes Up and Looping Error

    When you have Chinese (Simplified) and/or Chinese (Traditional) enabled in the language selector, the program can freeze and an error loops in the console. It happens no matter what other languages are enabled.

    https://user-images.githubusercontent.com/60769253/197659506-38871035-e311-4710-9eb9-ac2d7387841f.mp4

    opened by DerpTaco99921 0
Releases(v0.4)
  • v0.4(Feb 2, 2022)

    Rebuilt from the ground up with a new GUI and translation method.

    Changes:

    -Improved GUI.

    -Translations are retrieved from a front-end to Google Translate called Lingva, which removes the issue with being blocked for doing too many requests.

    -Translations are done in an asynchronous function using aiohttp instead of a process pool, which is optimal for large bulk translations.

    -Removed selenium obfuscation.

    Additions: -Importing and saving text files. -Language Selector to activate or deactivate any individual language. -Language setting for the result. -Three different split methods: ____-Initial ________-Text is split by length before being passed into the obfuscate function. ________-Faster as less requests are made. ________-Different languages for each piece. ________-Tabs not preserved. ____-Continuous ________-Text is split by length inside the obfuscate function. ________-Faster as less requests are made. ________-Same languages for each piece. ________-Tabs not preserved. ____-Newline ________-Text is split by newlines and tabs. ________-Slower as more requests are made. ________-Every single line is translated with different languages. ________-Tabs preserved. -Translation Generator which creates a .csv file containing multiple translations of the same text: ____-Repeat mode obfuscates the original text each time, adding the result in each new column. ____-Continue mode obfuscates the results from each subsequent obfuscation, adding the result in each new column.

    Source code(tar.gz)
    Source code(zip)
    Python.Text.Obfuscator.v0.4.zip(15.75 KB)
  • v0.3.1c-r2(Dec 23, 2021)

  • v0.3.1c(Dec 23, 2021)

    Newlines no longer get messed up in Urllib Obfuscator. Added a choice to split by length or by newlines. —Split by length is faster and uses less requests (better for longer texts) —Split by newline is slower and uses more requests but adds much more translation variety. Reminder: Since google has a URL request limit, you'll need to switch VPN locations when the request limit is hit.

    Source code(tar.gz)
    Source code(zip)
    Python.Text.Obfuscator.v0.3.1c.zip(51.63 KB)
  • v0.3.1b(Dec 23, 2021)

  • v0.3.1a(Dec 23, 2021)

  • v0.3(Dec 23, 2021)

    I made massive improvements to the speed of the obfuscation thanks to learning about urllib.

    For example, I did translated the same ~2300 character long string of text 10 times in the old and new version; the old one took 38.8 seconds while the new one took only 6.8 seconds.

    In addition, the capacity to add a larger amount of characters is far increased as it doesn't require Firefox tabs to be open and eating up ram.

    As a test I translated the entire Among Us Wikipedia page 50 times (with a character count of over 60 thousand!), and it only took only 114 seconds to finish translating. Using the old obfuscator I wouldn't be able to translate more than half that amount, and it would take ages to complete (Like 10 mins or more).

    Unfortunately for this version the Excel Obfuscator is removed until I can figure out how to get it to work in urllib, if I can't then I'll probably add it back it with Selenium.

    At least if you couldn't get selenium to work on your computer for the previous versions you don't have to worry about getting it for this.

    Source code(tar.gz)
    Source code(zip)
    Python.Text.Obfuscator.v0.3.zip(5.73 KB)
  • v0.2.2(Dec 23, 2021)

  • v0.2.1b(Dec 23, 2021)

  • v0.2.1a(Dec 23, 2021)

    Fixed TimeoutExceptions for the string translations (textbox input) obfuscation. You can now do as many translations as you want without worrying about encountering an error. Same for amount of characters (as long as your PC can handle of course). As for excel translations they remain unchanged — since I can't do anything about Google's Document translation limit — so just switch locations on VPN like usual after 10 translations for the Excel Obfuscator.

    Source code(tar.gz)
    Source code(zip)
    Python.Text.Obfuscator.v0.2.1.zip(5.88 KB)
  • v0.2(Dec 23, 2021)

  • v0.1b(Dec 23, 2021)

  • v0.1a(Dec 23, 2021)

YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

liuhuanyong 357 Dec 24, 2022
A Plover python dictionary allowing for consistent symbol input with specification of attachment and capitalisation in one stroke.

Emily's Symbol Dictionary Design This dictionary was created with the following goals in mind: Have a consistent method to type (pretty much) every sy

Emily 68 Jan 07, 2023
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
Active learning for text classification in Python

Active Learning allows you to efficiently label training data in a small-data scenario.

Webis 375 Dec 28, 2022
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.

gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A

Ashley Kim 2 Jan 09, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

10 Jul 01, 2022
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023