This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Overview

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans.

The approach builds on top of an arbitrary single-scan Panoptic Segmentation network and extends it to the temporal domain by associating instances across time using our Contrastive Aggregation network that leverages the point-wise features from the panoptic network.

Requirements

  • Install this package: go to the root directory of this repo and run:
pip3 install -U -e .

Data preparation

Download the SemanticKITTI dataset inside the directory data/kitti/. The directory structure should look like this:

./
└── data/
    └── kitti
        └── sequences
            ├── 00/           
            │   ├── velodyne/	
            |   |	├── 000000.bin
            |   |	├── 000001.bin
            |   |	└── ...
            │   └── labels/ 
            |       ├── 000000.label
            |       ├── 000001.label
            |       └── ...
            ├── 08/ # for validation
            ├── 11/ # 11-21 for testing
            └── 21/
                └── ...

Pretrained models

Reproducing the results

Run the evaluation script, which will compute the metrics for the validation set:

python evaluate_4dpanoptic.py --ckpt_ps path/to/panoptic_weights --ckpt_ag path/to/aggregation_weights 

Training

Create instances dataset

Since we use a frozen Panoptic Segmentation Network, to avoid running the forward pass during training, we save the instance predictions and the point features in advance running:

python save_panoptic_features.py --ckpt path/to/panoptic_weights

This will create a directory in cont_assoc/data/instance_features with the same structure as Kitti but containing, for each sequence of the train set, npy files containing the instance points, labels and features for each scan.

Save validation predictions

To get the 4D Panoptic Segmentation performance for the validation step during training, we save the full predictions for the validation set (sequence 08) running:

python save_panoptic_features.py --ckpt path/to/panoptic_weights --save_val_pred

This will create a directory in cont_assoc/data/validation_predictions with npy files for each scan of the validation sequence containing the semantic and instance predictions for each point.

Train Contrastive Aggregation Network

Once the instance dataset and the validation predictions are generated, we're ready to train the Contrastive Aggregation Network running:

python train_aggregation.py 

All the configurations are in the config/contrastive_instances.yaml file.

Citation

If you use this repo, please cite as :

@article{marcuzzi2022ral,
  author = {Rodrigo Marcuzzi and Lucas Nunes and Louis Wiesmann and Ignacio Vizzo and Jens Behley and Cyrill Stachniss},
  title = {{Contrastive Instance Association for 4D Panoptic Segmentation \\ using Sequences of 3D LiDAR Scans}},
  journal = {IEEE Robotics and Automation Letters (RA-L)},
  year = 2022,
  volume={7},
  number={2},
  pages={1550-1557},
}

Acknowledgments

The Panoptic Segmentation Network used in this repo is DS-Net.

The loss function it's a modified version of SupContrast.

License

Copyright 2022, Rodrigo Marcuzzi, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022